

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	pV = nRT nV			2	3.11.2.2
	$n = \frac{pV}{RT}$	Substitution	1		
	$=\frac{5.0 \times 10^{5} \text{ Pa} \times 2 \times 10^{-4} \text{ m}^{3}}{8.31 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \times (100 + 273)}$ $= 0.032 \text{ mol}$	Answer	1		
01.2	pV = nRT			2	3.11.2.2
	$V = \frac{nRT}{p}$	Substitution	1		
	$=\frac{0.032 \times 8.31 \times 273}{1.0 \times 10^5 \mathrm{Pa}}$ = 7.3×10 ⁻⁴ m ³	Answer	1		
01.3	A–B : The gas temperature and pressure decrease as the volume stays the same		1	3	3.11.2.2
	C–D : The gas temperature and pressure increase as the volume stays the same		1		
01.4	B-C : Work done by the gas = $p\Delta V = 1.0 \times 10^5$ Pa $\times (7.3 - 2) \times 10^{-4}$ m ³ = +53 J D-A : Work done on the gas = $p\Delta V = 5.0 \times 10^5$ Pa $\times (2 - 7.3) \times 10^{-4}$ m ³ = -265 J Magnitude of work done D-A is 5 times work done B-C, and have opposite signs	1 mark answer, 1 mark sign 1 mark answer, 1 mark sign Comment	1 1 1	2	3.11.2.3
02.1	If T is constant, $p_A V_A = p_C V_C$ $p_C = \frac{p_A V_A}{V_C}$	Explicit statement that <i>T</i> is constant	1		3.11.2.2
	$= \frac{V_{\rm C}}{\frac{3 \times 10^6 {\rm Pa} \times 2 \times 10^{-3} {\rm m}^3}{4 \times 10^{-3} {\rm m}^3}}$ = 1.5×10 ⁶ Pa	Answer	1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.2	6 6 6 6 6 6 6 6 6 6 7 8 7 7 6 7 7 <th>Point A correct and labelled at (2,3) Point C correct and labelled at (4, 1.5) Curved line from A to C Arrows on lines</th> <th>1 1 1</th> <th></th> <th>3.11.2.3</th>	Point A correct and labelled at (2,3) Point C correct and labelled at (4, 1.5) Curved line from A to C Arrows on lines	1 1 1		3.11.2.3
02.3	A heat pump Correct reason – one from: Work done by the system is positive/done at a higher temperature Energy is absorbed at a higher temperature and exhausted at a lower temperature		1 1	3	3.11.2.2
02.4	Isothermal changes can involve the transfer of heat into a system to compensate for the work done by a gas, or the transfer out of a gas to compensate for the work done on it		2	3	3.11.2.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.5	State A: Temperature = $T_A = \frac{p_A V_A}{nR} = \frac{3 \times 10^6 \text{ Pa} \times 2 \times 10^{-3} \text{ m}^3}{3 \times 8.31} = 241 \text{ K} (240.67)$	Calculations (both)	1	3	3.11.2.5
	State B: Temperature = $T_{\rm B} = \frac{p_{\rm A}V_{\rm B}}{nR} = \frac{3 \times 10^{6} \text{Pa} \times 4 \times 10^{-3} \text{m}^{3}}{3 \times 8.31} = 481 \text{K} (481.34)$ Theoretical efficiency = $\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}} = \frac{481 - 241}{481} = 50\%$	Answer	1		
03.1	In an adiabatic change, no heat passes in or out of the gas $Q = \Delta U + W$ (first law), and here $Q = 0$ so $\Delta U = -W$ The work done on the gas increases its temperature	stated	1 1 1	1	3.11.2.1 3.11.2.2
03.2	$p_{1} \times V_{1}^{\gamma} = p_{2} \times V_{2}^{\gamma}$ $p_{2} = \frac{p_{1} \times V_{1}^{\gamma}}{V_{2}^{\gamma}} = \frac{1.00 \times 10^{5} \times (240 \times 10^{-6})^{1.4}}{(50.0 \times 10^{-6})^{1.4}}$ $= 8.99 \times 10^{5} \text{ Pa}$	Substitution Answer	1 1	2	3.11.2.2
03.3	P heat addition expansion heat compression V	Correct shape for both graphs Correct labels for both graphs	1 1	1	3.11.2.4
	In a petrol engine, the fuel-air mixture is ignited and the pressure increases at constant volume, shown by the vertical section of the graph where heat is added In a diesel engine, fuel is injected and the volume increases at constant pressure, shown by the horizontal section of the graph	Explanation linked to graph Explanation linked to graph	1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Answers		Extra information	Mark	AO	Spec reference				
03.4		mark scheme gives some guidance as to what statements are expected be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2), and 5 or 6 mark (L3) answer to be present:			6	3	3.11.2.4				
	Mark	Criteria	QoWC	Bullet point 1 in question (Comparison of frictional losses)							
	6	<u>A thorough and well-communicated</u> discussion using all of the information given and answering the questions in both bullet points	The student presents relevant information coherently, employing structure, style,	1. Frictional power = indicated power – brake power Indicated power = work done per cycle × no. of cycles sec ⁻¹ × no. of cylinders							
	5	An explanation that includes discussion using most of the information given and answering the questions in both bullet points but may contain minor errors or omissions	and SP&G to render meaning clear The text is legible	Indicated power of A: $430 \times \frac{4250}{60} \times 4 = 121.8 \text{ kW}$ Indicated power of B: $307 \times \frac{5360}{60} \times 4 = 109.7 \text{ kW}$ Frictional power A: 121.8 kW - 35 kW = 86.8 kW Frictional power B: 109.7 kW - 27 kW = 82.7 kW Frictional losses for Engine A are greater than those for Engine B The statement is incorrect Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{\text{brake power}}{\text{input power}}$ A: Input power = $38 \times 10^6 \times 2.8$	Indicated power of A: $430 \times \frac{4250}{60} \times 4 = 121.8 \text{ kW}$ Indicated power of B:						
	4	<u>The response includes a well-</u> <u>presented</u> discussion using some of the information given and answering the questions in both bullet points but may contain major errors or omissions	The student presents relevant information and in a way which assists the communication of meaning								
	3	<u>The response includes a</u> discussion of one comment from each bullet	The text is legible SP&G are sufficiently accurate not to obscure meaning		The statement is incorrect Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{brake power}{input power}$	The statement is incorrect Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{\text{brake power}}{\text{input power}}$ A: Input power = $38 \times 10^6 \times 2.8$	The statement is incorrect Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{\text{brake power}}{\text{input power}}$ A: Input power = $38 \times 10^6 \times 2.8$	Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{\text{brake power}}{\text{input power}}$ A: Input power = $38 \times 10^6 \times 2.8$	Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency = $\frac{\text{brake power}}{\text{input power}}$ A: Input power = $38 \times 10^6 \times 2.8$		
	2	<u>The response</u> makes comments about one bullet point using some information	The student presents some relevant information in a simple form	×10 ⁻³ = 106.4 kW B: Input power = $42 \times 10^6 \times 2.6 \times 10^{-3}$ = 109.2 kW Overall efficiency A: $35 \times \frac{100}{106.4}$ = 33 (32.9)%							

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question		Answers		Extra information	Mark	AO	Spec reference
	0	Makes relevant comment	The text is usually legible SP&G allow meaning to be derived although errors are sometimes obstructive The student's	Overall efficiency B: $27 \times \frac{100}{109.2} = 25 (24.7)\%$ Ratio of efficiencies: $\frac{33}{25} = 1.32$ Statement is incorrect			
		statements	presentation, SP&G seriously obstruct understanding				
04.1		$\frac{4}{5} \frac{\omega}{6.5 \times 10^{6}} = 11(.4) \text{ rad s}^{-1}$ (.4) rad 2π × 60 = 108.7 rpm = 110 rpm		Substitution Answer	1 1	2	3.11.2.4
04.2	Contai Diesel	power = calorific value of fuel × fuel flow ner ship: Input power = $38 \times 10^6 \times \frac{3.43}{3600}$ = car: Input power = $46 \times 10^6 \times \frac{0.62}{3600}$ = 7900 4.6 (4.57)	36(.2)×10 ³ W	Substitution (both) Answer (both) Comparison	1 1	2	3.11.2.4
04.3		l efficiency = $\frac{brake power}{input power}$ power = overall efficiency × input power = 0.35 × 7912 = 2800 (2769) W		Substitution Answer	1 1	2	3.11.2.4

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.4	$\frac{P_{\rm cs}}{P_{\rm D}} = \frac{T_{\rm cs}}{T_{\rm D}} \frac{\omega_{\rm cs}}{\omega_{\rm D}}$		1	3	3.11.2.4
	$\frac{T_{\rm cs}}{T_{\rm D}} = \frac{T_{\rm cs}}{P_{\rm D}} = \frac{74 \times 10^6}{2769} = 26 \times 10^3$		1		
	The mass of the container ship is much larger than that of the diesel car, so a larger torque/force will be needed to produce an acceleration		1		
	The rotational speed of the crankshaft in the car is probably larger than that in the container ship, so the ratio is smaller		1		
05.1	$T_1 = 273 + 24 = 297 \text{ K}, T_2 = 273 - 3 = 270 \text{ K}$ $\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{270}{297} = 0.091$	Calculation of temperatures	1	2	3.11.2.6
	Efficiency = 50% of 0.091 = 0.045	Answer	1		
05.2	$COP_{ref} = \frac{T_{C}}{T_{H} - T_{c}} = \frac{270}{297 - 270} = 10$	Calculation	1	2	3.11.2.6
	$COP_{ref} = \frac{Q_{H}}{W} = 10$	Calculation	1		
	Q = 10% of work done by motor on refrigerator per second = 10×1.2 kW = 12 kJ s ⁻¹	Energy per second	1		
05.3	The air inside the refrigerator is being cooled D–A The motor is doing work on the refrigerant A–B The refrigerant is condensing B–C		1 1 1	2	3.11.2.3
05.4	Suitable reason, e.g., Energy is transferred due to the flow of the refrigerant		1	1	3.11.2.6

۲

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
06.1	Answers $COP_{hp} = \frac{T_{H}}{T_{H} - T_{C}}$ $= \frac{293}{293 - 283} = 29.3$ $COP_{ref} = \frac{T_{C}}{T_{H} - T_{C}}$ $= \frac{297}{304 - 297} = 42.4$	Substitutions Answers	1 1	2	3.11.2.6
06.2	The device is working between different temperatures in each mode		1	3	3.11.2.6
06.3	energy = $mcDq$ power = $\frac{mass}{t} \times c \times \Delta q$	Manipulation of SHC	1	3	3.6.2.1
	$\frac{\text{mass}}{t} = \frac{\text{power}}{c \times \Delta \theta}$ $= 230 \times 10^{3}$	Substitution Answer in kg s ⁻¹	1 1		
	$= \frac{230 \times 10^{3}}{4200 \times (60 - 10)}$ = 1.095kgs ⁻¹ density = $\frac{\text{mass}}{\text{volume}}$ $\frac{\text{volume}}{t} = \frac{\frac{\text{mass}}{t}}{\text{density}}$ $\frac{1.095\text{kgs}^{-1}}{1000} = 1.1 \times 10^{-3} \text{ m}^{3} \text{ s}^{-1}$	Answer in m ³ s ^{−1}	1		
06.4	A thermistor is connected in series with a resistor and a power supply with a voltmeter/output voltage from across the resistor or thermistor As the temperature increases, the resistance of the thermistor decreases The output can be used to trigger a circuit that will cut off the heater	 potential divider description effect of temp on output p.d. connection to power supply of heater. 	1 1 1	3	3.5.1.3

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.1	Using the conservation of energy:	Explicit or implied	1	3	3.4.1.8
	Either: $\frac{1}{2}k\Delta L^2 = mgh$	Equation of the form $y = mx$ (explicit or implied)	1		3.4.2.1
	$h = \frac{k\Delta L^2}{2mgh}$	Column heading clearly stated x and y labels (both) How to use gradient	1		
	Column C heading = compression ² x-axis: ΔL^2		1		
	γ -axis: ΔL^{-}		1		
	Gradient = $\frac{k}{2mg}$; k = gradient × 2mg				
	01 0				
	$\frac{1}{2}k\Delta L^2 = mgh$				
	$\Delta L = \sqrt{\frac{2mgh}{k}}$				
	Column C heading = \sqrt{h}				
	x-axis: \sqrt{h}				
	y-axis: ΔL				
	Gradient = $\int \frac{2mg}{L}$				
	$k = \frac{\sqrt{\frac{k}{2mg}}}{\text{gradient}^2}$				
	[∼] gradient ²				
07.2	$\frac{1}{2}k\Delta L^2 = \frac{1}{2}mv^2\max$			3	3.4.1.8
		Rearranging k.e. = e.p.e	1		3.4.2.1
	$v_{\rm max} = \Delta L \sqrt{\frac{k}{m}}$	Use of data from table	1		
	\sqrt{m} Maximum possible velocity for maximum value of $\Delta L = 2.0$ cm = 0.02 m		1		
		Answer			
	$v_{\rm max} = 0.02 \sqrt{\frac{80}{0.05}} = 0.8 {\rm m s^{-1}}$		1		
	The mass is moving fastest at the point when the spring has reached				
	its original length/diagram showing compressed spring and an uncompressed length		1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.3	$k = m \left(\frac{\nu_{\text{max}}}{\Delta L}\right)^2 = 45 \times \left(\frac{0.8}{0.08}\right)^2 = 4500 \text{ N m}^{-1}$		1	2	3.4.1.8 3.4.2.1
07.4	$Q = \Delta U + W = \Delta U + p\Delta V = 0$ /adiabatic change The gas will heat up when compressed due to work done, which will heat the bike cylinder/air Less energy is available for the air to do work on the piston in expansion, so no the piston would not return to its original length		1 1 1	3	3.11.2.2
08.1	$T_{1}V_{1}^{\gamma-1} = T_{2}V_{2}^{\gamma-1}$ $\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\gamma-1} = \frac{T_{2}}{T_{1}}$ $\left(\frac{\nu_{1}}{\nu_{2}}\right) = \left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{\gamma-1}}$	Substitution	1	2	3.11.2.2
	$= \left(\frac{343}{293}\right)^{\frac{1}{1.4-1}}$ = 1.48 \approx 1.5	Answer	1		
08.2	 Any two from: There is friction between the piston and the cylinder In an ideal adiabatic change, there is no energy transfer in or out of the system, but in a real system the parts of the engine get hot The temperature of the gas coming in is higher, and the gas is heated to a very high temperature to ensure complete combustion of the fuel 		2	3	3.11.2.4
08.3	$E = \frac{V}{d}, V = E \times d = 10 \times 10^5 \times 0.8 \times 10^{-3}$ = 800 V This is low compared to the pd that is produced because the gas that is conducting is an fuel-air mixture and not just air/fuel molecules are more massive and harder to accelerate/ionise	Substitution Answer Comment	1 1 1	3	3.7.3.2

۲

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
08.4	The pd from the battery is dc and produces a constant current through a primary coil in a transformer, which produces a constant magnetic field/flux A high secondary pd in a transformer needs a large rate of change of flux Which can be produced when the current is turned on or off	Reference to constant current/ magnetic flux Rate of change of flux and pd Way to produce it	1 1 1	3	3.7.5.6

۲

Skills box answers

۲

Question	Answer
1	$p_2 = \frac{p_1 V_1^{\gamma}}{V_2^{\gamma}}$
	$p_2 = \frac{150 \times 300^{1.4}}{600^{1.4}} = 56.8 \mathrm{kPa}$
	$T_1 = (7 + 273) \text{ K} = 280 \text{ K}$
	$T_2 = \frac{p_2 V_2 T_1}{p_1 V_1}$
	$T_2 = \frac{56.8 \times 600 \times 280}{150 \times 300} = 212 \mathrm{K}$
2	$p_1V_1 = p_2V_2$ so $p_2 = \frac{150 \times 0.06}{0.04} = 225$ kPa
3	$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$
	$p_2 = \frac{200 \times 50^{1.67}}{5.0^{1.67}} = 9355 \text{kPa}$

© Oxford University Press www.oxfordsecondary.com