A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	$\begin{aligned} p V & =n R T \\ n & =\frac{p V}{R T} \\ & =\frac{5.0 \times 10^{5} \mathrm{~Pa} \times 2 \times 10^{-4} \mathrm{~m}^{3}}{8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times(100+273)} \\ & =0.032 \mathrm{~mol} \end{aligned}$	Substitution Answer	1 1	2	3.11.2.2
01.2	$\begin{aligned} p V & =n R T \\ V & =\frac{n R T}{p} \\ & =\frac{0.032 \times 8.31 \times 273}{1.0 \times 10^{5} \mathrm{~Pa}} \\ & =7.3 \times 10^{-4} \mathrm{~m}^{3} \end{aligned}$	Substitution Answer	1 1	2	3.11.2.2
01.3	A-B: The gas temperature and pressure decrease as the volume stays the same C-D: The gas temperature and pressure increase as the volume stays the same		1 1	3	3.11.2.2
01.4	B-C: Work done by the gas $=p \Delta V=1.0 \times 10^{5} \mathrm{~Pa} \times(7.3-2) \times 10^{-4} \mathrm{~m}^{3}=+53 \mathrm{~J}$ D-A: Work done on the gas $=p \Delta V=5.0 \times 10^{5} \mathrm{~Pa} \times(2-7.3) \times 10^{-4} \mathrm{~m}^{3}=-265 \mathrm{~J}$ Magnitude of work done $D-A$ is 5 times work done $B-C$, and have opposite signs	1 mark answer, 1 mark sign 1 mark answer, 1 mark sign Comment	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.11.2.3
02.1	If T is constant, $p_{\mathrm{A}} V_{\mathrm{A}}=p_{\mathrm{C}} V_{\mathrm{C}}$ $\begin{aligned} p_{\mathrm{C}} & =\frac{p_{\mathrm{A}} V_{\mathrm{A}}}{V_{\mathrm{C}}} \\ & =\frac{3 \times 10^{6} \mathrm{~Pa} \times 2 \times 10^{-3} \mathrm{~m}^{3}}{4 \times 10^{-3} \mathrm{~m}^{3}} \\ & =1.5 \times 10^{6} \mathrm{~Pa} \end{aligned}$	Explicit statement that T is constant Answer	1 1		3.11.2.2

A Level AQA Physics

26 Thermodynamics and engines - answers

A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
02.5	$\begin{aligned} & \text { State A: Temperature }=T_{\mathrm{A}}=\frac{p_{\mathrm{A}} V_{\mathrm{A}}}{n R}=\frac{3 \times 10^{6} \mathrm{~Pa} \times 2 \times 10^{-3} \mathrm{~m}^{3}}{3 \times 8.31}=241 \mathrm{~K}(240.67) \\ & \text { State } \mathrm{B}: \text { Temperature }=T_{\mathrm{B}}=\frac{p_{\mathrm{A}} V_{\mathrm{B}}}{n R}=\frac{3 \times 10^{6} \mathrm{~Pa} \times 4 \times 10^{-3} \mathrm{~m}^{3}}{3 \times 8.31}=481 \mathrm{~K}(481.34) \\ & \text { Theoretical efficiency }=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}=\frac{481-241}{481}=50 \% \end{aligned}$	Calculations (both) Answer	1 1	3	3.11.2.5
03.1	In an adiabatic change, no heat passes in or out of the gas $Q=\Delta U+\mathrm{W}$ (first law), and here $Q=0$ so $\Delta U=-W$ The work done on the gas increases its temperature	stated	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 3.11 .2 .1 \\ & 3.11 .2 .2 \end{aligned}$
03.2	$\begin{aligned} p_{1} \times V_{1}^{\gamma} & =p_{2} \times V_{2}^{\gamma} \\ p_{2} & =\frac{p_{1} \times V_{1}^{\gamma}}{V_{2}^{r}}=\frac{1.00 \times 10^{5} \times\left(240 \times 10^{-6}\right)^{1.4}}{\left(50.0 \times 10^{-6}\right)^{1.4}} \\ & =8.99 \times 10^{5} \mathrm{~Pa} \end{aligned}$	Substitution Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.11.2.2
03.3	In a petrol engine, the fuel-air mixture is ignited and the pressure increases at constant volume, shown by the vertical section of the graph where heat is added In a diesel engine, fuel is injected and the volume increases at constant pressure, shown by the horizontal section of the graph	Correct shape for both graphs Correct labels for both graphs Explanation linked to graph Explanation linked to graph	1 1 1 1	1	3.11.2.4

Question	Answers			Extra information	Mark	AO	Spec reference
03.4	The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2), and 5 or 6 mark (L3) answer			The following statements are likely to be present: Bullet point 1 in question (Comparison of frictional losses) 1. Frictional power = indicated power - brake power Indicated power = work done per cycle \times no. of cycles sec ${ }^{-1} \times$ no. of cylinders Indicated power of A: $430 \times \frac{4250}{60} \times 4=121.8 \mathrm{~kW}$ Indicated power of B: $307 \times \frac{5360}{60} \times 4=109.7 \mathrm{~kW}$ Frictional power A: $121.8 \mathrm{~kW}-35 \mathrm{~kW}=86.8 \mathrm{~kW}$ Frictional power B: 109.7 kW - 27 kW $=82.7$ kW Frictional losses for Engine A are greater than those for Engine B The statement is incorrect Bullet point 2 in question (Comparison of overall efficiency) 7. Overall efficiency $=\frac{\text { brake power }}{\text { input power }}$ A: Input power $=38 \times 10^{6} \times 2.8$ $\times 10^{-3}=106.4 \mathrm{~kW}$ B: Input power $=42 \times 10^{6} \times 2.6 \times$ $10^{-3}=109.2 \mathrm{~kW}$ Overall efficiency A: $35 \times \frac{100}{106.4}=33(32.9) \%$	6	3	3.11.2.4
	Mark	Criteria	QowC				
	6	A thorough and well-communicated discussion using all of the information given and answering the questions in both bullet points	The student presents relevant information coherently, employing structure, style, and SP\&G to render meaning clear The text is legible				
	5	An explanation that includes discussion using most of the information given and answering the questions in both bullet points but may contain minor errors or omissions					
	4	The response includes a wellpresented discussion using some of the information given and answering the questions in both bullet points but may contain major errors or omissions	The student presents relevant information and in a way which assists the communication of meaning The text is legible SP\&G are sufficiently accurate not to obscure meaning				
	3	The response includes a discussion of one comment from each bullet					
	2	The response makes comments about one bullet point using some information	The student presents some relevant information in a simple form				

[^0]
A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers			Extra information	Mark	AO	Spec reference
	1 0	Makes relevant comment	The text is usually legible SP\&G allow meaning to be derived although errors are sometimes obstructive	Overall efficiency B: $27 \times \frac{100}{109.2}=25(24.7) \%$ Ratio of efficiencies: $\frac{33}{25}=1.32$ Statement is incorrect			
		No relevant coverage of the likely statements	The student's presentation, SP\&G seriously obstruct understanding				
04.1	$\begin{aligned} P & =T \times \omega \\ \omega & =\frac{P}{T}=\frac{74 \times 10^{6}}{6.5 \times 10^{6}}=11(.4) \mathrm{rad} \mathrm{~s}^{-1} \\ & =\frac{11(.4) \mathrm{rad}}{2 \pi} \times 60=108.7 \mathrm{rpm}=110 \mathrm{rpm} \end{aligned}$			Substitution Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.11.2.4
04.2	Input power = calorific value of fuel \times fuel flow rate Container ship: Input power $=38 \times 10^{6} \times \frac{3.43}{3600}=36(.2) \times 10^{3} \mathrm{~W}$ Diesel car: Input power $=46 \times 10^{6} \times \frac{0.62}{3600}=7900(7912) \mathrm{W}$ Ratio: 4.6 (4.57)			Substitution (both) Answer (both) Comparison	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.11.2.4
04.3	$\begin{aligned} & \text { Overall efficiency }=\frac{\text { brake power }}{\text { input power }} \\ & \begin{aligned} \text { Brake power } & =\text { overall efficiency } \times \text { input power } \\ & =0.35 \times 7912=2800(2769) \mathrm{W} \end{aligned} \end{aligned}$			Substitution Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.11.2.4

A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
04.4	$\begin{aligned} & \frac{P_{\mathrm{cs}}}{P_{\mathrm{D}}}=\frac{T_{\mathrm{cs}}}{T_{\mathrm{D}}} \frac{\omega_{\mathrm{cs}}}{\omega_{\mathrm{D}}} \\ & \frac{T_{\mathrm{cs}}}{T_{\mathrm{D}}}=\frac{T_{\mathrm{cs}}}{P_{\mathrm{D}}}=\frac{74 \times 10^{6}}{2769}=26 \times 10^{3} \end{aligned}$ The mass of the container ship is much larger than that of the diesel car, so a larger torque/force will be needed to produce an acceleration The rotational speed of the crankshaft in the car is probably larger than that in the container ship, so the ratio is smaller		1 1 1 1	3	3.11.2.4
05.1	$\begin{aligned} & T_{1}=273+24=297 \mathrm{~K}, T_{2}=273-3=270 \mathrm{~K} \\ & \eta=1-\frac{T_{2}}{T_{1}}=1-\frac{270}{297}=0.091 \\ & \text { Efficiency }=50 \% \text { of } 0.091=0.045 \end{aligned}$	Calculation of temperatures Answer	1 1	2	3.11.2.6
05.2	$\begin{aligned} & \mathrm{COP}_{\text {ref }}=\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}-T_{\mathrm{c}}}=\frac{270}{297-270}=10 \\ & \mathrm{COP}_{\text {ref }}=\frac{Q_{\mathrm{H}}}{W}=10 \\ & \begin{array}{l} Q=10 \% \text { of work done by motor on refrigerator per second } \\ \quad=10 \times 1.2 \mathrm{~kW}=12 \mathrm{~kJ} \mathrm{~s}^{-1} \end{array} \end{aligned}$	Calculation Calculation Energy per second	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.11.2.6
05.3	The air inside the refrigerator is being cooled D-A The motor is doing work on the refrigerant $\mathbf{A}-\mathbf{B}$ The refrigerant is condensing B-C		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.11.2.3
05.4	Suitable reason, e.g., Energy is transferred due to the flow of the refrigerant		1	1	3.11.2.6

A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
06.1	$\begin{aligned} \mathrm{COP}_{\mathrm{hp}} & =\frac{T_{\mathrm{H}}}{T_{\mathrm{H}}-T_{\mathrm{C}}} \\ & =\frac{293}{293-283}=29.3 \\ \mathrm{COP}_{\mathrm{ref}} & =\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}-T_{\mathrm{C}}} \\ & =\frac{297}{304-297}=42.4 \end{aligned}$	Substitutions Answers	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.11.2.6
06.2	The device is working between different temperatures in each mode		1	3	3.11.2.6
06.3	$\begin{aligned} \text { energy } & =m c D q \\ \text { power } & =\frac{\text { mass }}{t} \times c \times \Delta q \\ \frac{\text { mass }}{t} & =\frac{\text { power }}{c \times \Delta \theta} \\ & =\frac{230 \times 10^{3}}{4200 \times(60-10)} \\ & =1.095 \ldots \mathrm{~kg} \mathrm{~s}^{-1} \\ \text { density } & =\frac{\text { mass }}{\text { volume }} \\ \frac{\text { volume }}{t} & =\frac{\frac{\text { mass }}{t}}{\text { density }} \\ \frac{1.095 . \mathrm{kg} \mathrm{~s}^{-1}}{1000} & =1.1 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~s}^{-1} \end{aligned}$	Manipulation of SHC Substitution Answer in $\mathrm{kg} \mathrm{s}^{-1}$ Answer in $\mathrm{m}^{3} \mathrm{~s}^{-1}$	1 1 1 1	3	3.6.2.1
06.4	A thermistor is connected in series with a resistor and a power supply with a voltmeter/output voltage from across the resistor or thermistor As the temperature increases, the resistance of the thermistor decreases The output can be used to trigger a circuit that will cut off the heater	- potential divider description - effect of temp on output p.d. - connection to power supply of heater.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.5.1.3

A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.1	Using the conservation of energy: Either: $\begin{aligned} \frac{1}{2} k \Delta L^{2} & =m g h \\ h & =\frac{k \Delta L^{2}}{2 m g h} \end{aligned}$ Column C heading $=$ compression ${ }^{2}$ $x \text {-axis: } \Delta L^{2}$ y-axis: h Gradient $=\frac{k}{2 m g} ; k=$ gradient $\times 2 m g$ or or $\begin{aligned} \frac{1}{2} k \Delta L^{2} & =m g h \\ \Delta L & =\sqrt{\frac{2 m g h}{k}} \end{aligned}$ Column C heading $=\sqrt{h}$ x-axis: \sqrt{h} y-axis: ΔL $\begin{aligned} & y \text {-axIs: } \Delta L \\ & \text { Gradient }=\sqrt{\frac{2 m g}{k}} \\ & k=\frac{2 m g}{\text { gradient }^{2}} \end{aligned}$	Explicit or implied Equation of the form $y=m x$ (explicit or implied) Column heading clearly stated x and y labels (both) How to use gradient	1 1 1 1 1	3	$\begin{aligned} & 3.4 .1 .8 \\ & 3.4 .2 .1 \end{aligned}$
07.2	$\begin{aligned} & \frac{1}{2} k \Delta L^{2}=\frac{1}{2} m v^{2} \max \\ & v_{\max }=\Delta L \sqrt{\frac{k}{m}} \end{aligned}$ Maximum possible velocity for maximum value of $\Delta L=2.0 \mathrm{~cm}=0.02 \mathrm{~m}$ $v_{\max }=0.02 \sqrt{\frac{80}{0.05}}=0.8 \mathrm{~m} \mathrm{~s}^{-1}$ The mass is moving fastest at the point when the spring has reached its original length/diagram showing compressed spring and an uncompressed length	Rearranging k.e. = e.p.e Use of data from table Answer	1 1 1 1	3	$\begin{aligned} & 3.4 .1 .8 \\ & 3.4 .2 .1 \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.3	$k=m\left(\frac{v_{\max }}{\Delta L}\right)^{2}=45 \times\left(\frac{0.8}{0.08}\right)^{2}=4500 \mathrm{Nm}^{-1}$		1	2	$\begin{aligned} & 3.4 .1 .8 \\ & 3.4 .2 .1 \end{aligned}$
07.4	$Q=\Delta U+W=\Delta U+p \Delta V=0 / \text { adiabatic change }$ The gas will heat up when compressed due to work done, which will heat the bike cylinder/air Less energy is available for the air to do work on the piston in expansion, so no the piston would not return to its original length		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.11.2.2
08.1	$\begin{aligned} T_{1} V_{1}^{\gamma-1} & =T_{2} V_{2}^{\gamma-1} \\ \left.\left\lvert\, \frac{v_{1}}{v_{2}}\right.\right)^{\gamma-1} & =\frac{T_{2}}{T_{1}} \\ \left(\frac{v_{1}}{v_{2}}\right)^{\prime} & =\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{\gamma-1}} \\ & =\left(\frac{343}{293}\right)^{\frac{1}{1.4-1}} \\ & =1.48 \approx 1.5 \end{aligned}$	Substitution Answer	1 1	2	3.11.2.2
08.2	Any two from: - There is friction between the piston and the cylinder - In an ideal adiabatic change, there is no energy transfer in or out of the system, but in a real system the parts of the engine get hot - The temperature of the gas coming in is higher, and the gas is heated to a very high temperature to ensure complete combustion of the fuel		2	3	3.11.2.4
08.3	$\begin{aligned} E & =\frac{V}{d}, V=E \times d=10 \times 10^{5} \times 0.8 \times 10^{-3} \\ & =800 \mathrm{~V} \end{aligned}$ This is low compared to the pd that is produced because the gas that is conducting is an fuel-air mixture and not just air/fuel molecules are more massive and harder to accelerate/ionise	Substitution Answer Comment	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.7.3.2

A Level AQA Physics

26 Thermodynamics and engines - answers

Question	Answers	Extra information	Mark	AO	Spec reference
08.4	The pd from the battery is dc and produces a constant current through a primary coil in a transformer, which produces a constant magnetic field/flux A high secondary pd in a transformer needs a large rate of change of flux Which can be produced when the current is turned on or off	Reference to constant current/ magnetic flux Rate of change of flux and pd Way to produce it	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.7.5.6

Skills box answers

Question	Answer
$\mathbf{1}$	$p_{2}=\frac{p_{1} V_{1}^{r}}{V_{2}{ }^{r}}$
$p_{2}=\frac{150 \times 300^{1.4}}{600^{1.4}}=56.8 \mathrm{kPa}$	
$T_{1}=(7+273) \mathrm{K}=280 \mathrm{~K}$	
$T_{2}=\frac{p_{2} V_{2} T_{1}}{p_{1} V_{1}}$	
$T_{2}=\frac{56.8 \times 600 \times 280}{150 \times 300}=212 \mathrm{~K}$	
$\mathbf{2}$	$p_{1} V_{1}=p_{2} V_{2}$ so $p_{2}=\frac{150 \times 0.06}{0.04}=225 \mathrm{kPa}$
$\mathbf{3}$	$p_{1} V_{1}^{r}=p_{2} V_{2}^{r}$
$p_{2}=\frac{200 \times 50^{1.67}}{5.0^{1.67}}=9355 \mathrm{kPa}$	

[^0]: © Oxford University Press www.oxfordsecondary.com

