

| Question | Answers                                                                                                                                                                           | Extra information                            | Mark   | AO | Spec reference |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|----|----------------|
| 01.1     | 100 revolutions per minute = $100 \times \frac{2\pi}{60}$<br>= 10.5 rad s <sup>-1</sup>                                                                                           | Conversion to rad s <sup>-1</sup>            | 1      | 2  | 3.11.1.3       |
|          | $\Delta t = \frac{\Delta \omega}{a} = \frac{10.5}{2.00} = 5.24 \mathrm{s}$                                                                                                        | Answer                                       | 1      |    |                |
| 01.2     | Find the moment of inertia of the wheel<br>Use torque = moment of inertial × angular acceleration to find torque<br>Use torque = force × distance (radius of wheel) to find force | Use of $T = Ia$<br>Use of $T = Fr$           | 1<br>1 | 3  | 3.11.1.4       |
| 01.3     | $\omega_2^2 = \omega_1^2 + 2a\theta$ $\theta = \frac{\omega_2^2 - \omega_1^2}{2a}$                                                                                                | Substitution                                 | 1      | 2  | 3.11.1.3       |
|          | $= \frac{0-10.5^2}{2 \times 2.00}$<br>= 27.4 rad<br>$= \frac{27.4}{2\pi}$<br>= 4.36 revolutions                                                                                   | Answer<br>Conversion to revolutions          | 1      |    |                |
| 01.4     | time time                                                                                                                                                                         | Does not start at zero<br>Gradient increases | 1<br>1 | 3  | 3.11.1.3       |
| 01.5     | The graph in part <b>01.1</b> would be linear<br>The deceleration is constant                                                                                                     |                                              | 1<br>1 | 3  | 3.11.1.3       |
| 02.1     | Correct suggestion, e.g.,<br>Engineers may apply torques by firing engines, and they need the moment<br>of inertia to work out the angular acceleration                           |                                              | 1      | 3  | 3.11.1.4       |

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲



| Question | Answers                                                       |                                                                                                         |                                   | Extra information                                                                                            | Mark        | AO       | Spec reference |
|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|----------|----------------|
| 02.2     | A column wi                                                   | A column with $t^2$ Either use of $t^2$ or $\sqrt{D}$                                                   | Either use of $t^2$ or $\sqrt{D}$ | 1                                                                                                            | 2           | 3.11.1.3 |                |
|          | D/m<br>0.2<br>0.4<br>0.6                                      | t²/s²       0.3025       0.6724       0.9801                                                            |                                   | Values calculated<br>Points plotted, straight line of<br>best fit<br>Axes correct and labelled<br>with units | 1<br>1<br>1 |          |                |
|          | 1.0                                                           | 1.7689                                                                                                  |                                   |                                                                                                              |             |          |                |
|          | Graph<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 | $\frac{1}{1}$ $\frac{1}{t^2/s}$ the gradient = $\frac{.8 \text{ m}}{4 \text{ s}^2} = 5.7 \text{ m s}^2$ | $=\frac{1}{2}a$                   | Correct use of equation<br>Answer                                                                            | 1<br>1      |          |                |

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲



| Question | Answers                                                                                                                                                                   | Extra information                                           | Mark | AO | Spec reference |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|----|----------------|
| 02.3     | $I = mR^2 \left(\frac{g}{2} - 1\right)$                                                                                                                                   |                                                             |      | 2  | 3.11.1.1       |
|          | $I = 0.1 \times 0.032^2 \left(\frac{9.8}{5.7} - 1\right)$                                                                                                                 | Substitution                                                | 1    |    |                |
|          | $= 7.3 \times 10^{-5} \mathrm{kg}\mathrm{m}^2$                                                                                                                            | Answer                                                      | 1    |    |                |
| 02.4     | Correct suggestion and explanation, e.g.,<br>The moment of inertia of the pulley is not taken into account<br>This means the calculated value is larger than it should be |                                                             | 2    | 3  | 3.11.1.3       |
| 03.1     | To smooth out the torque produced by the crankshaft, to ensure that a constant torque/speed is produced                                                                   |                                                             | 1    | 1  | 3.11.1.2       |
| 03.2     | No external torque is exerted on the system                                                                                                                               |                                                             | 1    | 1  | 3.11.1.5       |
| 03.3     | $I_{1}\omega_{1i} + I_{2}\omega_{2i} = (I_{1} + I_{2})\omega_{f}$<br>0.21 × 530 + 0.15 × 240 = (0.21 + 0.15)w                                                             | Use of conservation of angular moment (explicit or implied) | 1    | 2  | 3.11.1.5       |
|          | $\omega = 409 \text{ rad s}^{-1} (409.2)$                                                                                                                                 | Answer                                                      | 1    |    |                |
| 03.4     | Impulse = change in angular momentum                                                                                                                                      |                                                             |      |    | 3.11.1.5       |
|          | $=I\Delta\omega$                                                                                                                                                          | Substitution                                                | 1    | 2  |                |
|          | $= 0.36 \times 0.1 \times 410$<br>= 14.8 kg m <sup>2</sup> rad c <sup>-1</sup>                                                                                            | Answer                                                      | 1    | 2  |                |
|          | Assuming torque is constant                                                                                                                                               | Assumption                                                  | 1    | 1  |                |
| 04.1     | Angular velocity = $\frac{\text{linear velocity}}{r}$                                                                                                                     |                                                             | 1    | 1  | 3.11.1.4       |
|          | Or linear velocity = angular velocity $\times r$                                                                                                                          |                                                             |      |    |                |
| 04.2     | 2200 revolution per minute = $2200 \times \frac{2\pi}{100}$                                                                                                               |                                                             |      |    | 3.11.1.4       |
|          | Linear velocity $v = \omega r$                                                                                                                                            | Substitution                                                | 1    | 2  |                |
|          | $= 1.38 \times 10^4 \times 0.125 \mathrm{m}$ $= 1.73 \times 10^3 \mathrm{m} \mathrm{s}^{-1}$                                                                              | Answer                                                      | 1    |    |                |

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲



| Question | Answers                                                                                                                                               | Extra information                            | Mark   | AO | Spec reference       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|----|----------------------|
| 04.3     | Kinetic energy = $\frac{1}{2}mv^2$                                                                                                                    | Use of data from diagram                     | 1      | 3  | 3.11.1.2             |
|          | Power = $\frac{\text{energy}}{\text{time}}$                                                                                                           | Answer                                       | 1      |    |                      |
|          | $=\frac{\frac{1}{2} \times 1.3 \times 10^{-3} \times (1.73 \times 10^{3})^{2}}{0.25}$<br>= 7.76×10 <sup>3</sup> W                                     |                                              |        |    |                      |
| 04.4     | Moment of inertia = $\frac{1}{2}mR^2$                                                                                                                 |                                              |        | 2  | 3.11.1               |
|          | $= \frac{1}{2} \times 1.3 \times 10^{-3} \times (0.125)^{2}$<br>= 1.02×10 <sup>-5</sup> kg m <sup>2</sup><br>= 1.0×10 <sup>-5</sup> kg m <sup>2</sup> | Substitution<br>Answer                       | 1<br>1 |    |                      |
| 04.5     | Torque exerted on mass = $F \times d$<br>= 6 50 × 0 125 = 0 813 N m                                                                                   | Substitution                                 |        | 3  | 3.11.1.5<br>3.11.1.6 |
|          | Power = $T \times \omega$<br>$\omega$ is reduced by $\frac{1}{1}$ = 1.23 rad s <sup>-1</sup>                                                          | Answer                                       | 1      |    |                      |
|          | 0.813                                                                                                                                                 |                                              | 1      |    |                      |
| 05.1     | $I = \frac{1}{2} \times 50 \text{ kg} \times (0.3 \text{ m})^2$<br>= 2.25 kg m <sup>2</sup><br>= 2.3 kg m <sup>2</sup>                                |                                              | 1      | 2  | 3.11.1.1             |
| 05.2     | $I_{\text{hand}} = mR^2$                                                                                                                              |                                              |        | 2  | 3.11.1.1             |
|          | $= 2.56 \text{ kg m}^2$                                                                                                                               | Use of equation<br>Calculation for 2 'hands' | 1<br>1 |    |                      |
|          | $= (2.25 + 2.56 + 2.56) \text{ kg m}^2$<br>= 7.37 kg m <sup>2</sup><br>= 7.4 kg m <sup>2</sup>                                                        | Total answer<br>Allow 7.5 kg m <sup>2</sup>  | 1      |    |                      |

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲



| Question | Answers                                                                                                                                                                                                                                            | Extra information              | Mark             | AO | Spec reference |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----|----------------|
| 05.3     | $L = I\omega$<br>= 7.37 kgm <sup>2</sup> × 2.2 rad s <sup>-</sup><br>= 16.2 kg m <sup>2</sup> s <sup>-1</sup><br>= 16 kg m <sup>2</sup> s <sup>-1</sup>                                                                                            |                                | 1                | 2  | 3.11.1.5       |
| 05.4     | moment of inertia decreases<br>Angular momentum stays the same/is conserved<br>The angular speed increases<br>Assuming no external torques act                                                                                                     | Do not accept 'external force' | 1<br>1<br>1<br>1 | 3  | 3.11.1.5       |
| 05.5     | $T\Delta t = \Delta(I\omega)$ $T = \frac{\Delta(I\omega)}{\Delta t}$ $= \frac{\{\text{student's answer to } 05.3\} \text{ kg m}^2 \text{ rad s}^{-1}}{24 \text{ s}}$ $= 0.67 \text{ N m (if used L = 16)}$ $= 0.68 \text{ N m (if used L = 16.2)}$ | Substitution<br>Answer         | 1                | 2  | 3.11.1.5       |
| 06.1     | Rotational kinetic energy = $\frac{1}{2}I\omega^2$<br>= $\frac{1}{2}MR^2 \times \omega^2$<br>= $0.5 \times 15 \times 0.2^2 \times 1920^2$<br>= $1.11 \times 10^6$ J                                                                                | Substitution<br>Answer         | 1<br>1           | 2  | 3.11.1.2       |

۲

۲

۲



| Question | Answers                                                                                                                                                                                                     | Extra information                    | Mark        | AO | Spec reference     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|----|--------------------|
| 06.2     | Change in $E_k$ of the car = gain in rotational $E_k$ of the flywheel<br>Final $E_k$ of the car = initial $E_k$ – rotational $E_k$ gained<br>= $\frac{1}{2}mv_i^2 - 1.11 \times 10^6 \text{ J}$             | Explicit or implicit                 | 1           | 3  | 3.11.1.<br>3.4.1.3 |
|          | $= 0.5 \times 660 \times 67^{2} - 1.11 \times 10^{6} \text{ J}$<br>= 0.371 <u>37 × 10^{6} J</u><br>Final speed of the car = $\sqrt{\frac{2 \times 0.37137 \times 10^{6}}{660}}$<br>= 33.546ms <sup>-1</sup> | Change in energy                     | 1           |    |                    |
|          | Deceleration = $\frac{\Delta v}{\Delta t}$<br>33.546 67                                                                                                                                                     | Final speed                          | 1           |    |                    |
|          | $=\frac{3.3}{-10 \mathrm{m}\mathrm{s}^{-2}}$                                                                                                                                                                | ignore minus sign                    | 1           |    |                    |
| 06.3     | Correct suggestion, e.g.<br>The flywheel axle could be connected to a generator that produces a pd<br>A capacitor connected across the generator would charge up                                            | Link to flywheel<br>Use of generator | 1<br>1      | 3  | 3.7.5.4            |
| 06.4     | Energy stored in a capacitor = $\frac{1}{2}CV^2$<br>$0.5 \times 1.0 \times V^2$ = $1.11 \times 10^6$ J<br>V = 1490 V<br>This is a very high voltage                                                         | Substitution<br>Answer<br>comment    | 1<br>1<br>1 | 2  | 3.7.4.3            |
| 06.5     | At very high p.d., there is a large field strength/the dielectric can break down<br>The capacitor conducts/a large current flows/risk of wire melting/fire                                                  |                                      | 1<br>1      | 3  | 3.7.4.2            |
| 07.1     | An ionised gas consists of charged particles<br>If the particles are moving, there is a force on them <i>F</i> = <i>BIl</i> / magnetic field<br>to not effect stationary charges                            |                                      | 1<br>1      | 3  | 3.7.5.1            |

۲

۲

۲



| Question | Answers                                                                                                                                                                                                                                                                                                          | Extra information                                                             | Mark | AO | Spec reference                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------|----|-------------------------------|
| 07.2     | Moment of inertia of each wheel = $I = \frac{1}{2}Mr^2$<br>= 7846875 = 7.85 × 10 <sup>6</sup> kg m <sup>2</sup><br>Energy stored by one wheel when spinning at 24 rad s <sup>-1</sup><br>= $\frac{1}{2}I\omega^2$                                                                                                | MoI calculated                                                                | 1    | 3  | 3.11.1.6                      |
|          | $2 = 0.5 \times 7.85 \times 10^{6} \times 24^{2}$<br>= 2.259×10 <sup>9</sup> J<br>Power = $\frac{\text{energy}}{10^{6}} = \frac{2.25 \times 10^{9}}{10^{6}} = 538 \times 10^{6} \text{W}$                                                                                                                        | Energy calculated                                                             | 1    |    |                               |
|          | time 4.2<br>So two wheels are need to supply 1000 MW                                                                                                                                                                                                                                                             |                                                                               | 1    |    |                               |
| 07.3     | As the flywheel spins, there is stress in the wheel because it requires a force<br>to continue to keep the material of the wheel moving in a circle<br>The force is provided by the forces between atoms/microstructures, and, if<br>there are imperfections, the force may not be sufficient and the wheel will | Reference to circular motion and (centripetal force)                          | 1    | 3  | 3.6.1.1                       |
|          | fly apart                                                                                                                                                                                                                                                                                                        | Reference to forces                                                           | 1    |    |                               |
| 07.4     | Resistance = $\frac{\rho L}{A}$<br>Energy dissipated = $I^2 Rt = \frac{I^2 \rho Lt}{A}$ ( $\rho$ = resistivity)                                                                                                                                                                                                  | Manipulation of equations for resistance, density, and specific heat capacity | 1    | 3  | 3.5.1.3<br>3.4.2.1<br>3.6.2.1 |
|          | thermal energy gained = $mc\Delta\theta = dLAc\Delta\theta$ ( $d$ = density)<br>$I^{2}t\frac{\rho L}{A} = dLAc\Delta\theta = A = \sqrt{\frac{I^{2}t\rho}{d\Delta\theta}}$                                                                                                                                        | Use of change of temperature from room temperature                            | 1    |    |                               |
|          | $A = 0.226m^2$<br>diameter = 0.54 m                                                                                                                                                                                                                                                                              | Substitution and calculation or algebraic manipulation                        | 1    |    |                               |
|          | OR<br>= $I^{2}t \frac{\rho_{R}l}{A} = (51 \times 10^{6})^{2} \times 4.2 \times \frac{1.72 \times 10^{-8} \times 1 \text{ m}}{A}$<br>= $\frac{1.87 \times 10^{8}}{A}$                                                                                                                                             |                                                                               |      |    |                               |

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                   | Extra information                                 | Mark        | AO | Spec reference     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|----|--------------------|
|          | $E = mc\Delta\theta = dALc\Delta\theta$<br>= 8960 × A × 1 × 385 × (1085 - 20)<br>= 3.67×10 <sup>9</sup> × A<br>3.67×10 <sup>9</sup> × A = $\frac{1.87\times10^8}{A}$<br>$A^2 = \frac{1.87\times10^9}{3.67\times10^8}$<br>= 0.05095 m <sup>2</sup><br>A = 0.226m <sup>2</sup><br>Diameter = 0.54 m<br>This is extremely large, so the coils must be continuously cooled    | Answer for area<br>Answer for diameter<br>Comment | 1<br>1<br>1 |    |                    |
| 08.1     | The centre of mass is the point through which the mass of the object appears to act, but the moment of inertia is a body's tendency to resist angular acceleration                                                                                                                                                                                                        | Both needed for mark                              | 1           | 1  | 3.4.1.2<br>3.11.1. |
| 08.2     | There is a torque/force acting at a distance from the pivot to the centre of<br>mass, which turns the ruler about the pivot<br>The torque decreases to zero when the ruler is vertical, but continues<br>because it has angular momentum<br>As it moves up from being vertical, the torque opposes the motion, so the<br>angular velocity decreases to zero (momentarily) | Do not accept energy argument                     | 1<br>1<br>1 | 2  | 3.11.1.4           |
| 08.3     | Torque is analogous to force, and angle is analogous to distance<br>Area under a force–distance graph is work done, so area under the torque–<br>distance graph is work done                                                                                                                                                                                              |                                                   | 1<br>1      | 1  | 3.11.1.3           |

۲

۲

۲



| Question | Answers                                                                                                               | Extra information                                | Mark   | AO | Spec reference       |
|----------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|----|----------------------|
| 08.4     | $mgh = \frac{1}{2}I\omega^2$<br>The centre of mass of the ruler is raised through a vertical height of 15 cm.         | Conservation of energy                           | 1      | 3  | 3.4.1.8<br>3.11.1.2  |
|          | Moment of inertia = $\frac{1}{3} \times 0.065 \times 0.3^2$                                                           | Moment of inertia                                | 1      |    |                      |
|          | $\omega^2 = \frac{mgh}{\frac{1}{2}I}$                                                                                 |                                                  |        |    |                      |
|          | $\therefore \omega = 9.9 \text{ rad s}^{-1}$                                                                          | Answer                                           | 1      |    |                      |
| 08.5     | Angular momentum before = angular momentum after<br>Angular momentum of ball = $mR^2 \times \frac{v}{p} = mvR$        | Conservation of angular<br>momentum              | 1      | 3  | 3.11.1.1<br>3.11.1.5 |
|          | 0.00195 × 9.9 = 0.005 × 2.5 × 0.3 + 0.00195 × $\omega_{\rm f}$<br>$\omega_{\rm f}$ = 8.0 (7.98) rad s <sup>-1</sup>   | Use of <i>mR</i> <sup>2</sup> for ball<br>Answer | 1<br>1 |    |                      |
| 08.6     | Angular kinetic energy has been reduced by $\left(\frac{0.17}{0.34}\right)^2$ ,                                       | Use of energy<br>Answer                          | 1<br>1 | 3  | 3.4.1.8<br>3.11.1.2  |
|          | so the height would be $\approx 65\% \times$ the previous height, so yes the difference in height would be noticeable |                                                  |        |    |                      |

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

#### **Skills box answers**

۲

| Question | Answer                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | In 12 hours the hour hand will rotate through $2\pi$ rad.<br>$\omega = \frac{2\pi}{(12 \times 60 \times 60)} = 1.5 \times 10^{-4} \text{ rad s}^{-1}$                                                                                     |
| 2        | Angular displacement in 1 minute = $23000 \times 2\pi = 46000\pi$ rad.<br>$\omega = \frac{46000\pi}{60} = 2.4 \times 10^3 \text{rad s}^{-1}$                                                                                              |
| 3        | Linear displacement $s = 200 \text{ m}; r = \frac{50}{2 \text{ cm}} = 0.25 \text{ m}; t = 20 \text{ s}$<br>Angular displacement $= \frac{s}{r} = \frac{200}{0.25} = 800 \text{ rad}$<br>$\omega = \frac{800}{20} = 40 \text{ rad s}^{-1}$ |

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

