

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Time = 0.7 s Pulse rate = $\frac{60}{0.7}$ = 86 beats per minute		1 1	3.10.3.1 AO1
01.2	Suitable scale added 0 to 1 mV Each small square is 0.2 mV		1 1	3.10.3.1 AO1
01.3	 Max 4 marks from: (should be in this order) Sino-atrial node fires/depolarisation Atria contracts Impulse delayed at the atrio-ventricular node/to allow ventricles to fill Ventricular node fires/depolarisation Ventricle contracts Heart muscle repolarises/heart muscle relaxes 	A suitably labelled diagram can gain all marks	max 4	3.10.3.1 AO1
01.4	 Max 2 marks from: T would decrease Flat part of the trace would be shorter The trace will have noise 		1 1	3.10.3.1 AO2
01.5	Hair and dead skin removed Use of conducting gel/no air gap		1 1	3.10.3.1 AO1
02.1	 Max 4 marks from: Alternating/high frequency pd/emf applied Crystal expands and contracts Vibration of faces produces ultrasound/pressure waves/greater than 20 kHz Backing material damps/stops vibrations Short pulses Received signals cause crystal to vibrate Producing alt pd across the crystal 	Must contain at least one point about received signal for full marks	max 4	3.10.4.1 AO1
02.2	Signal reflected/transmitted at <u>boundary</u> between two media Proportion reflected depends on the acoustic impedance of each medium		1 1	3.10.4.1 AO1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.3	Correctly identifying B and C $T = 3 \times 2.5 \times 10^{-6}$ s $D = s \times t = 4080 \times 3 \times 2.5 \times 10^{-6} = 0.031$ m	Allow 2 marks for correct working but wrong section identified	1 1 1	3.10.4.1 AO2
02.4	$v = f\lambda$ $\lambda = \frac{4080}{8 \times 10^6} = 5.1 \times 10^{-4} \mathrm{m}$		1	3.3.1.1 AO1
02.5	The resolution is the ability to distinguish between objects close together (or wtte) The smaller the wavelength, the greater detail it is possible to see		1 1	3.10.4.1 AO2
03.1	 Max 2 marks from: Use of lead diaphragm/cone perpendicular to the beam Film is close to object Distance from source to film is large Grid used to absorb scattered X-ray photons 		max 2	3.10.5.1 AO2
03.2	Filters out low-energy photons These cannot pass through tissue, so not needed for diagnosis/are absorbed by tissue increasing harm/risk		1 1	3.10.5.1 AO2
03.3	Decrease in intensity, decrease increasing at 3 cm then more steadily at 4.5 cm Clear exponential drop shown for 1.5 cm of bone suitably labelled	Values of intensity can be ignored – looking for contrast between bone and muscle	1 1	3.10.5.3 AO3
03.4	 Max 3 marks from: Muscle and tissue have similar attenuation coefficients Heart does not stay still for long Image captured quickly/short exposure Contrast used With high coefficient/high Z 		max 3	3.10.5.3 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.1	$\sin C = \frac{n_2}{n_1}$			3.3.2.3 AO1
	$\sin C = \frac{1.43}{1.55}$		1	
	<i>C</i> = 67°		1	
04.2	This decreases the angle of incidence, making it more likely to be less than the critical angle		1	3.10.4.2 AO2
	Increases probability		1	
04.3	 Max 3 marks from: Coherent has fixed arrangement of fibres at each end Incoherent has a random arrangement of fibres Coherent is used to transmit an image Incoherent is used to light up the inside of the body 		max 3	3.10.4.2 AO3
04.4	Cutting tissue/cauterising/stopping bleed/removing tumour Comparatively non-invasive/less scaring/less risk to patient	Allow any sensible suggestion here	1 1	3.10.4.2 AO1
05.1	 Max 4 marks from: Patient lies in strong/superconducting/intense magnetic field Pulse of specific radio frequency/RF radiation is applied Hydrogen nuclei align to a different position When RF stops H/nuclei return to original/equilibrium positions Releases RF radiation which is detected and processed by computer This release of energy happens at different relaxation times for different tissues 		max 4	3.10.4.3 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.2	 Points to consider: Advantages CT scanner: Good for bone fractures; will also give good image of the brain and abdominal organs Good resolution Gives full cross-sectional image It is non-invasive Disadvantages CT scanner: Highly ionising Limited contrast between tissues of similar density Often requires patients to hold their breath, which some may find hard to do Advantages MR scanner: No ionising radiation Can distinguish between different types of soft tissue better than a CT scan The resolution for soft tissue is better than a CT scan It can show both three-dimensional and cross-sectional images It is non-invasive Disadvantages MR scanner: MR scans cannot be used if the patient has any metallic implants, such as a pacemaker The patient might have to be still for up to an hour Bone and calcium do not show up on this type of scan 	6 marks will clearly explain the advantages and disadvantages of both scanners in a range of situations 4 marks will include at least one advantage and disadvantage for each or consider one scanner in detail 2 marks will address at least one of the bullet points 1 mark will have any sensible comment 0 marks has no relevant physics	max 6	AO2 3.10.4.3 3.10.5.4
06.1	 Collimator: Only gamma rays/photons which travel along the axes of lead tubes are detected/ensures only photons originating from directly below that point reach the scintillator Scintillator: A gamma ray photon produces thousands/many photons of (visible) light Photomultiplier: An electrical pulse is produced from each photon of visible light/one electron released, accelerated and then releases 4 more, etc., until electric pulse achieved 		1 1 1	AO1 3.10.6.3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.2	Annihilation when electron meets positron Conservation of momentum means they have to travel in opposite directions		1 1	3.1.2.3 AO2
06.3	$E = mc^{2}$ $E = 2 \times 9.11 \times 10^{-31} \times (3 \times 10^{8})^{2}$ Total $E = 1.6398 \times 10^{-13} \text{ J}$ $E \text{ of 1 photon} = \frac{8.199 \times 10^{-14} \text{ J}}{1.6 \times 10^{-19}}$ E of 1 photon = 0.51 MeV		1 1 1	3.1.2.3 AO2
06.4	Gamma photons are detected at different times at opposite points Computer calculates point of origin using distance = speed of light × time difference		1 1	3.10.6.1 AO1
07.1	The time taken for half the initial sample of material to be excreted from the body by biological means		1	3.10.6.2 A01
07.2	$\frac{1}{T_{e}} = \frac{1}{T_{p}} + \frac{1}{T_{b}}$ $\frac{1}{T_{e}} = \frac{1}{21700} + \frac{1}{86400}$ $T_{e} = 17000 \text{ s}$ $T_{e} = 4.8 \text{ hours}$		1	3.10.6.2 A03
07.3	Allow time between 1 and 5 hours By 5 hours, activity halved so needs to be within that time But needs time to be taken up by tissues so greater than 1 hour	Allow any sensible suggestion	1 1 1	3.10.6.2 A03
07.4	Longer half-life so that activity is higher for longer period (or wtte) Beta emitter so ionises local tissue/tumour only	Must have description and explanation for mark	1 1	3.10.6.5 A01
08.1	Thermionic emission		1	3.10.5.1 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
08.2	to prevent collisions of electrons with molecules to stop the target overheating/melting		1 1	3.10.5.1 AO1
08.3	Use of $E = eV$, $E = \frac{hc}{\lambda}$ or $eV = \frac{hc}{\lambda}$ $\lambda = \frac{hc}{eV} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 180000}$ $\lambda = 6.9 \times 10^{-12} \mathrm{m}$		1	3.2.1.3 3.10.5.1 AO2
08.4	Use of $Q = It$ or number of photons needed = $\frac{1.2}{eV} = 4.166 \times 10^{13}$ Number of electrons per second = $\frac{25 \times 10^{-3}}{1.6 \times 10^{-19}}$ 1% photons produced = $0.01 \times \frac{25 \times 10^{-3}}{1.6 \times 10^{-19}}$ Only 4% produced used photons per second = $0.04 \times 0.01 \times \frac{25 \times 10^{-3}}{1.6 \times 10^{-19}} = 6.25 \times 10^{13}$ per second Time = $\frac{\text{number of photons}}{\text{photons per second}} = \frac{4.1666 \times 10^{13}}{6.25 \times 10^{13}} = 0.67 \text{ s}$		1 1 1	3.5.1.1 3.2.1.3 3.10.5.1 AO3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Skills box answers

۲

Question	Answer
1	Oxygen atoms are found in many compounds used by the body, so radioactive ¹⁵ O incorporated into water or glucose molecules will be carried by the blood and travel through the body to the brain.
2(a)	$^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + \nu \text{ (positron + neutrino)}$
2(b)	$\frac{\ln 2}{2.03 \min} = 0.34 \min^{-1} \text{ or } \frac{\ln 2}{(2.03 \times 60 \text{ s})} = 5.7 \times 10^{-3} \text{ s}^{-1}$
3	Activity after 3 days: $A = A_0 e^{-\lambda t} = 14.8 \text{ MBq} \times e^{(-0.053h-1 \times (24 \times 3)h)} = 0.33 \text{ MBq}.$ Activity after 11 days: $A = 14.8 \text{ MBq} \times e^{(-0.053h-1 \times (24 \times 11)h)} = 12 \text{ Bq}.$ Two days after the test, the patient will still be emitting gamma rays with an activity of 0.33 MBq. If they were to sleep next to someone else for about 7 h this would increase the radiation dose of that person too, so they should keep at a distance for 11 days until the ¹²³ I has decayed to an activity of tens of becquerels. However, in public they would not be so close to another person for such long periods so it is not a risk to other people to go out while the activity is still slightly raised.

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

