A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
01.1	$\begin{aligned} & v=2.54 \\ & v^{2}=6.43 \text { (If rounded data used, may have } 6.45 \text {) } \end{aligned}$	Must be to same number of sig figs as table	2	2	3.4.1.3
01.2	Point plotted to within nearest half grid square Line of best fit drawn - with intercept		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	MS 3.2
01.3	Systematic Error in measuring height s - needs to be middle of card to middle of light gate/s; measured too short		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.1.2
01.4	Triangle drawn on graph or use of coordinates demonstrated Value for gradient $=17 \pm 0.4$	Not simply using values from table - must be from graph	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	MS 3.4
01.5	$\begin{aligned} & v^{2}=u^{2}+2 a s \text { and } u=0 \\ & v^{2}=2 a s \\ & \text { Gradient }=2 a \text { or } 2 g \\ & g=\frac{17}{2}=8.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	Range of values 8.7 to 8.3 from gradient	1 1 1	2	3.3.1.3
01.6	$\begin{aligned} & \% \text { difference }=\frac{\text { result }- \text { actual }}{\text { actual }} \times 100 \% \\ & \% \text { difference }=\frac{1.31}{9.81} \times 100 \%=13 \% \end{aligned}$	ignore minus sign	1	2	3.1.2
02.1	Max three from: - draw round the semi-circular block and mark a point in the centre of the straight edge (measured with ruler) - use a protractor to mark the normal (line perpendicular) from this point - dark lines 5° apart from the normal to 35° (at least 6 suggested) - each entering the glass at 45° - use fine ray of light or laser as source - point along the drawn pathways mark a point to trace the path of the outgoing ray.		$\max 3$	2	Atj

A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
02.2	Large triangle seen or coordinates used shown $\frac{0.7-0.06}{0.5-0}=1.3$	triangle is at least half the graph Accept 1.28	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.3.2.3
02.3	Line of worst fit drawn (could be max or min) Gradient of $\max =\frac{0.9-0.0}{0.64-0.02}=1.5$ Absolute uncertainty $=1.5-1.3=0.2$ Gradient of $\min =\frac{0.88-0.1}{0.66-0.00}=1.2$ $1.3-1.2=0.1$	Full 3 marks for steepest as that is line of worst fit Min line gains 2 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.1.2
02.4	Experimental value $=1.3 \pm 0.2$, therefore value does lie within experimental uncertainty	Answer consistent with their results - so if they drew min line of best fit, value does not lie in experimental uncertainty	1	1	3.1.2
03.1	Temperature: - place whole apparatus in water bath making sure trapped air completely submerged - stir regularly to make sure temperature even - leave time at each temperature to ensure air at same temperature as water bath - use thermometer/digital thermometer to record temperature. Volume: - attach apparatus to a ruler - read length of trapped air - make sure eye level with meniscus when reading - do not remove from water bath when reading measurement.	Must have at least one statement from volume and one from temperature for full marks	$\max 4$	2	3.1.2
03.2	Max two from: - lowest temperature possible - minimum internal energy (allow zero kinetic energy) - $-273^{\circ} \mathrm{C}$ - pressure of a gas at this temperature is zero.		$\max 2$	1	3.6.2.2

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
03.3	$\begin{aligned} & \text { Intercept }=3 \\ & \text { Gradient }=\frac{3.9-3.0}{80}=0.011 \\ & \text { Use of } y=m x+c \text { when } y=0 \\ & 0 \end{aligned}=0.011 x+3 \text { (} \begin{aligned} & \\ & x=-270(272) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2	$\begin{gathered} \text { M3.3 and } 3.4 \\ 3.6 .2 .2 \end{gathered}$
03.4	This value is much lower than earlier value This will be because the air was warmer than the surrounding water as the water cooled too quickly/temperature lag This would give a larger intercept and shallower gradient making result too low		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.1.2
04.1	Using a micrometer/Vernier callipers Take the diameter along the length in several places and find mean	Idea of several readings along length important for second mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.1.2
04.2	$\begin{aligned} & A=\pi r^{2}=\pi \times\left(0.11 \times 10^{-3}\right)^{2}=3.8-10^{-8} \mathrm{~m}^{2} \\ & \text { Use of } \rho=\frac{R A}{l}=\frac{7.0 \Omega \times 3.8 \times 10^{-8}}{0.50}=5.3 \times 10^{-7} \\ & \Omega \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.5.1.3
04.3	$\begin{aligned} & \% \text { length }=\frac{0.001}{0.500} \times 100 \%=0.2 \% \\ & \% \text { diameter }=\frac{0.01}{0.22} \times 100 \%=4.5 \% \\ & \% R=\frac{0.4}{7.0} \times 100 \%=5.7 \% \end{aligned}$ $\%$ uncertainty $=0.2+(2 \times 4.5)+5.7=15 \%$	1 mark for calculating any one percentage uncertainty correctly	1 1	2	3.1.2

A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
04.4	Any sensible suggestion for graph and how ρ calculated: - plot R against length, and gradient $=\frac{\rho}{A}$ - plot $R A$ against length, and gradient $=\rho$ Why more accurate: - allows you to identify anomalies - systematic errors in measuring length/or resistance of connecting wires will not affect final answer.	Must have explained graph and suggested why more accurate for full marks	$\max 3$	3	$\begin{gathered} \text { 3.5.1.3 } \\ 3.1 .2 \end{gathered}$
05.1	Depth: - using a ruler with no zero error/marking levels on side of tray before experiment begins - ensure ruler is read at eye level. Speed: - using a stopwatch - measure the time for wave to travel at least three lengths of tray/or some consideration of increased distance/increased time to reduce uncertainty caused by human reaction time.	Allow any acceptable method for accurate measurements	1 1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	PS1.2
05.2	Any sensible suggestion of graph, what to expect and how to confirm: v against \sqrt{h} should be straight-line graph through the origin gradient $=\sqrt{g}$ or v^{2} against h should be straight-line graph through the origin gradient $=g$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	$\begin{gathered} \text { 3.1.2 } \\ \text { MS3.3 } \end{gathered}$
05.3	Students would have to confirm by using a different set of apparatus; or see if another student found the same relationship repeating the experiment		1	1	3.1.2

A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
06.1	Sensible guess at rooms dimensions, such as: $3 \mathrm{~m} \times 10 \mathrm{~m} \times 15=450 \mathrm{~m}^{3}$ Use of mass $=\rho V$ $\text { mass }=1.2 \times 450=540 \mathrm{~kg}$	Allow any sensible proposal here	1 1	3	3.1.3
06.2	$80 \times 28=2240 \mathrm{~J} \mathrm{~s}^{-1}$		1	2	3.4.1.7
06.3	$\begin{aligned} & E=2240 \times 20 \times 60=2688000 \mathrm{~J} \\ & E=m c \Delta \theta \\ & \Delta \theta=\frac{E}{m c}=5^{\circ} \mathrm{C} \end{aligned}$	Answers will vary based on mass calculations	1 1	2	3.6.2.1
06.4	No As temperature in room rises, thermal energy will be transferred from the room Or rate of energy transfer dependent on temperature outside/temperature difference/insulation/of walls/windows doors	Sensible answer backed by logical reasoning	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.6.2.1
07.1	Labelled diagram of apparatus - may be marks available here for method depending on detail - method for small amplitudes - for example, protractor (less than 10°) or method of measuring start height accurately each time - timing multiple oscillations to reduce uncertainty from reaction time using stopwatch - fiducial marker at centre point for timing - measuring length from top to middle of bob with metre ruler - lengths chosen so T longer - evidence that clamp stand is clamped to the desk for safety - or bag under bob in case it falls.	1 mark for diagram, 3 further marks for detail on method and accuracy	$\max 4$	2	$\begin{gathered} \text { Atb and d } \\ \text { PS2.1 } \\ \text { PS4.1 } \end{gathered}$
07.2	In first column 2 becomes 2.00 Add units s² for third column Values correct in third column: 8.12, 7.67, 7.40, 7.13, 6.60		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	PS2.2

A Level AQA Physics

1 Measurements and errors - answers

Question	Answers	Extra information	Marks	AO	Spec reference
07.3	Points plotted correctly within $1 / 2$ square Line of best fit drawn Gradient calculated $=4.0 \pm 0.2$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	MS 3.2
07.4	$\begin{aligned} & T=2 \pi \sqrt{\frac{l}{g}} \text { so } T^{2}=4 \pi^{2} \frac{l}{g} \\ & \text { Gradient }=\frac{4 \pi^{2}}{g} \\ & g=9.9 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$		1 1	2	3.6.1.3
07.5	The data is precise because the points are close to the line of best fit The data is accurate because the value of g is within 1% of the actual value	For second mark there should be justification of accuracy	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.1.2
08.1	$\begin{aligned} & \text { Use of } Q=I t \text { or } W=V Q \\ & W=F d=\operatorname{mad} \text { (or other energy equation) } \\ & V=\frac{W}{Q}=\frac{W}{I t} \\ & V=\frac{m a d}{i t}=\frac{\mathrm{kg} \mathrm{~s} \mathrm{~s}^{-2} \mathrm{~m}}{\mathrm{As}}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3} \end{aligned}$	Must be able to see cancelling and evidence of equations (can be entirely in units)	1 1 1	3	3.1.1
08.2	Simple circuit with one cell, variable resistor and ammeter in series, and voltmeter in parallel with variable resistor or cell	Mark for correct symbols and mark for correct arrangement	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.5.1.6
08.3	E.m.f. is y-intercept $-1.51 \pm 0.05 \mathrm{~V}$ Internal resistance is the gradient $0.41 \pm 0.2 \Omega$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.5.1.6
08.4	The actual e.m.f. is lower - or stated value 1.41 - consistent with results Internal resistance will be the same because all points are shifted by same amount	For all 3 marks students must have explained answers	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.1.2

A Level AQA Physics

1 Measurements and errors - answers

Skills box answers

Question	Answer
1(a)	$\frac{0.1}{6.7} \times 100 \%=1.49 \%$
1(b)	$\frac{10}{450} \times 100 \%=2.22 \%$
1(c)	$\frac{1000}{366000} \times 100 \%=0.27 \%$
2(a)	$\begin{aligned} & 3.43 \times 6.5 \%=3.43 \times 0.065=0.22 \\ & =3.43 \mathrm{~W} \pm 0.22 \mathrm{~W} \end{aligned}$
2(b)	$\begin{aligned} & 10 \times 10 \%=10 \times 0.1=1 \\ & =10 \mathrm{k} \Omega \pm 1 \mathrm{k} \Omega \end{aligned}$
2(c)	$\begin{aligned} & 12742 \times 0.3 \%=12742 \times 0.003=38.2 \\ & =12742 \mathrm{~km} \pm 38.2 \mathrm{~km} \end{aligned}$
3(a)	volume of cube $=\left(25.0 \times 10^{-3} \mathrm{~m}\right)^{3}=1.56 \times 10^{-5} \mathrm{~m}^{3}$ Calculate the percentage uncertainty in each measurement first: $\left(\frac{0.2 \times 10^{-3}}{25.0 \times 10^{-3}}\right) \times 100 \%=0.8 \%$. Then add the percentage uncertainties for all three measurements, which is 2.4%. So absolute uncertainty $=2.4 \%$ of $1.56 \times 10^{-5} \mathrm{~m}^{3}=4 \times 10^{-7} \mathrm{~m}^{3}$. Note: standard form integers must be between ≥ 1 or <10, so the power of the absolute uncertainty value has changed in this answer. Remember to always check powers when using standard form.
3(b)	$\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{42.19 \times 10^{-3} \mathrm{~kg}}{1.56 \times 10^{-5} \mathrm{~m}^{3}}=2700 \mathrm{~kg} \mathrm{~m}^{-3}$ To calculate uncertainty in density you need to add the percentage uncertainties in volume and mass. $\%$ uc mass $=\left(\frac{0.01}{42.19}\right) \times 100 \%=0.024 \%$ Adding the \% uc $=(0.024+2.4) \%=2.4 \%$ Absolute uncertainty $=$ absolute value $\times \%$ uc $=64.8 \mathrm{~kg} \mathrm{~m}^{-3}$ The density of aluminium $=2700 \mathrm{~kg} \mathrm{~m}^{-3} \pm 65 \mathrm{~kg} \mathrm{~m}^{-3}$.

[^0]
[^0]: © Oxford University Press www.oxfordsecondary.com

