

Question	Answers	Extra information	Marks	AO	Spec reference
01.1	v = 2.54 $v^2 = 6.43$ (If rounded data used, may have 6.45)	Must be to same number of sig figs as table	2	2	3.4.1.3
01.2	Point plotted to within nearest half grid square Line of best fit drawn – with intercept		1 1	2	MS 3.2
01.3	Systematic Error in measuring height <i>s</i> – needs to be middle of card to middle of light gate/s; measured too short		1 1	3	3.1.2
01.4	Triangle drawn on graph or use of coordinates demonstrated Value for gradient = 17 ± 0.4	Not simply using values from table – must be from graph	1 1	2	MS 3.4
01.5	$v^2 = u^2 + 2as \text{ and } u = 0$ $v^2 = 2as$ Gradient = 2a or 2g $g = \frac{17}{2} = 8.5 \text{ (m s}^{-2})$	Range of values 8.7 to 8.3 from gradient	1 1 1	2	3.3.1.3
01.6	% difference = $\frac{\text{result} - \text{actual}}{\text{actual}} \times 100\%$ % difference = $\frac{1.31}{9.81} \times 100\% = 13\%$	ignore minus sign	1	2	3.1.2
02.1	 Max three from: draw round the semi-circular block and mark a point in the centre of the straight edge (measured with ruler) use a protractor to mark the normal (line perpendicular) from this point dark lines 5° apart from the normal to 35° (at least 6 suggested) – each entering the glass at 45° use fine ray of light or laser as source point along the drawn pathways mark a point to trace the path of the outgoing ray. 		max 3	2	Atj

۲

۲

۲

Question	Answers	Extra information	Marks	AO	Spec reference
02.2	Large triangle seen or coordinates used shown $\frac{0.7 - 0.06}{0.5 - 0} = 1.3$	triangle is at least half the graph Accept 1.28	1 1	2	3.3.2.3
02.3	Line of worst fit drawn (could be max or min) Gradient of max = $\frac{0.9 - 0.0}{0.64 - 0.02} = 1.5$ Absolute uncertainty = $1.5 - 1.3 = 0.2$ Gradient of min = $\frac{0.88 - 0.1}{0.66 - 0.00} = 1.2$ 1.3 - 1.2 = 0.1	Full 3 marks for steepest as that is line of worst fit Min line gains 2 marks	1 1 1	2	3.1.2
02.4	Experimental value = 1.3 ± 0.2, therefore value does lie within experimental uncertainty	Answer consistent with their results – so if they drew min line of best fit, value does not lie in experimental uncertainty	1	1	3.1.2
03.1	 Temperature: place whole apparatus in water bath making sure trapped air completely submerged stir regularly to make sure temperature even leave time at each temperature to ensure air at same temperature as water bath use thermometer/digital thermometer to record temperature. Volume: attach apparatus to a ruler read length of trapped air – make sure eye level with meniscus when reading do not remove from water bath when reading measurement. 	Must have at least one statement from volume and one from temperature for full marks	max 4	2	3.1.2
03.2	 Max two from: lowest temperature possible minimum internal energy (allow zero kinetic energy) −273 °C pressure of a gas at this temperature is zero. 		max 2	1	3.6.2.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Marks	AO	Spec reference
03.3	Intercept = 3		1	2	M3.3 and 3.4
	Gradient = $\frac{3.9 - 3.0}{80}$ = 0.011		1		3.6.2.2
	Use of $y = mx + c$ when $y = 0$		1		
	0 = 0.011x + 3 x = -270 (272) (°C)		1		
03.4	This value is much lower than earlier value		1	3	3.1.2
	This will be because the air was warmer than the surrounding water as the water cooled too quickly/temperature lag		1		
	This would give a larger intercept and shallower gradient making result		1		
	too low				
04.1	Using a micrometer/Vernier callipers	Idea of several readings along	1	2	3.1.2
	Take the diameter along the length in several places and find mean	tength important for second mark	T		
04.2	$A = \pi r^2 = \pi \times (0.11 \times 10^{-3})^2 = 3.8 - 10^{-8} \mathrm{m}^2$		1	2	3.5.1.3
	Use of $\rho = \frac{RA}{L} = \frac{7.0 \Omega \times 3.8 \times 10^{-8}}{0.50} = 5.3 \times 10^{-7}$		1		
	Ωm		1		
04.3	% length = $\frac{0.001}{0.500} \times 100\% = 0.2\%$	1 mark for calculating any one percentage uncertainty correctly	1	2	3.1.2
	% diameter = $\frac{0.01}{0.22} \times 100\% = 4.5\%$				
	$\% R = \frac{0.4}{7.0} \times 100\% = 5.7\%$				
	% uncertainty = 0.2 +(2 \times 4.5) + 5.7 = 15%		1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Marks	AO	Spec reference
04.4	Any sensible suggestion for graph and how ρ calculated: • plot R against length, and gradient = $\frac{\rho}{A}$ • plot RA against length, and gradient = ρ Why more accurate: • allows you to identify anomalies • systematic errors in measuring length/or resistance of connecting wires will not affect final answer.	Must have explained graph and suggested why more accurate for full marks	max 3	3	3.5.1.3 3.1.2
05.1	 Depth: using a ruler with no zero error/marking levels on side of tray before experiment begins ensure ruler is read at eye level. Speed: using a stopwatch measure the time for wave to travel at least three lengths of tray/or some consideration of increased distance/increased time to reduce uncertainty caused by human reaction time. 	Allow any acceptable method for accurate measurements	1 1 1 1	3	PS1.2
05.2	Any sensible suggestion of graph, what to expect and how to confirm: v against \sqrt{h} should be straight-line graph through the origin gradient = \sqrt{g} or v^2 against h should be straight-line graph through the origin gradient = g		1 1 1	3	3.1.2 MS3.3
05.3	Students would have to confirm by using a different set of apparatus; or see if another student found the same relationship repeating the experiment		1	1	3.1.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Marks	AO	Spec reference
06.1	Sensible guess at rooms dimensions, such as: $3 \text{ m} \times 10 \text{ m} \times 15 = 450 \text{ m}^3$ Use of mass = ρV	Allow any sensible proposal here	1	3	3.1.3
	mass = $1.2 \times 450 = 540 \text{ kg}$		1		
06.2	$80 \times 28 = 2240 \text{ J s}^{-1}$		1	2	3.4.1.7
06.3	$E = 2240 \times 20 \times 60 = 2688000 \mathrm{J}$ $E = m c \Delta\theta$	Answers will vary based on mass calculations	1	2	3.6.2.1
	$\Delta \theta = \frac{E}{mc} = 5 ^{\circ} \text{C}$		1		
06.4	No As temperature in room rises, thermal energy will be transferred from the room Or rate of energy transfer dependent on temperature outside/temperature difference/insulation/of walls/windows doors	Sensible answer backed by logical reasoning	1 1	3	3.6.2.1
07.1	 Labelled diagram of apparatus – may be marks available here for method depending on detail method for small amplitudes – for example, protractor (less than 10°) or method of measuring start height accurately each time timing multiple oscillations to reduce uncertainty from reaction time using stopwatch fiducial marker at centre point for timing measuring length from top to middle of bob with metre ruler lengths chosen so <i>T</i> longer evidence that clamp stand is clamped to the desk for safety – or bag under bob in case it falls. 	1 mark for diagram, 3 further marks for detail on method and accuracy	max 4	2	Atb and d PS2.1 PS4.1
07.2	In first column 2 becomes 2.00 Add units s ² for third column Values correct in third column: 8.12, 7.67, 7.40, 7.13, 6.60		1 1 1	2	PS2.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Marks	AO	Spec reference
07.3	Points plotted correctly within ½ square Line of best fit drawn Gradient calculated = 4.0 ± 0.2		1 1 1	2	MS 3.2
07.4	$T = 2\pi \sqrt{\frac{l}{g}} \text{ so } T^2 = 4\pi^2 \frac{l}{g}$ Gradient = $\frac{4\pi^2}{g}$ $g = 9.9 \text{ m s}^{-2}$		1	2	3.6.1.3
07.5	The data is precise because the points are close to the line of best fit The data is accurate because the value of g is within 1% of the actual value	For second mark there should be justification of accuracy	1 1	1	3.1.2
08.1	Use of $Q = It$ or $W = VQ$ W = Fd = mad (or other energy equation) $V = \frac{W}{Q} = \frac{W}{It}$ $V = \frac{mad}{it} = \frac{\text{kg m s}^{-2} \text{m}}{\text{A s}} = \text{kg m}^2 \text{A}^{-1} \text{s}^{-3}$	Must be able to see cancelling and evidence of equations (can be entirely in units)	1 1 1	3	3.1.1
08.2	Simple circuit with one cell, variable resistor and ammeter in series, and voltmeter in parallel with variable resistor or cell	Mark for correct symbols and mark for correct arrangement	1 1	1	3.5.1.6
08.3	E.m.f. is y-intercept – $1.51 \pm 0.05 \text{ V}$ Internal resistance is the gradient $0.41 \pm 0.2 \Omega$		1 1	2	3.5.1.6
08.4	The actual e.m.f. is lower – or stated value 1.41 – consistent with results Internal resistance will be the same because all points are shifted by same amount	For all 3 marks students must have explained answers	1 1 1	3	3.1.2

۲

۲

۲

Skills box answers

۲

Question	Answer
1(a)	$\frac{0.1}{6.7} \times 100\% = 1.49\%$
1(b)	$\frac{10}{450}$ × 100 % = 2.22%
1(c)	$\frac{1000}{366000} \times 100\% = 0.27\%$
2(a)	$3.43 \times 6.5\% = 3.43 \times 0.065 = 0.22$ = $3.43 W \pm 0.22 W$
2(b)	$10 \times 10\% = 10 \times 0.1 = 1$ = 10 kΩ ± 1 kΩ
2(c)	$12742 \times 0.3\% = 12742 \times 0.003 = 38.2$ = 12742 km ± 38.2 km
3(a)	volume of cube = $(25.0 \times 10^{-3} \text{ m})^3 = 1.56 \times 10^{-5} \text{ m}^3$ Calculate the percentage uncertainty in each measurement first: $\left(\frac{0.2 \times 10^{-3}}{25.0 \times 10^{-3}}\right) \times 100\% = 0.8\%$. Then add the percentage uncertainties for all three measurements, which is 2.4%. So absolute uncertainty = 2.4% of $1.56 \times 10^{-5} \text{ m}^3 = 4 \times 10^{-7} \text{ m}^3$. Note: standard form integers must be between ≥ 1 or < 10, so the power of the absolute uncertainty value has changed in this answer. Remember to always check powers when using standard form.
3(b)	$density = \frac{mass}{volume} = \frac{42.19 \times 10^{-3} \text{ kg}}{1.56 \times 10^{-5} \text{ m}^3} = 2700 \text{ kg m}^{-3}.$ To calculate uncertainty in density you need to add the percentage uncertainties in volume and mass. % uc mass = $\left(\frac{0.01}{42.19}\right) \times 100\% = 0.024\%$ Adding the % uc = $(0.024 + 2.4)\% = 2.4\%$ Absolute uncertainty = absolute value \times % uc = 64.8 kg m ⁻³ The density of aluminium = 2700 kg m ⁻³ ± 65 kg m ⁻³ .

۲

© Oxford University Press www.oxfordsecondary.com