A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	Most of the alpha particles went through the gold foil but a few came back This confirmed that most of the atom was empty space / very small massive nucleus	Correct evidence Indication of change from previous model	1 1	1	3.8.1.1
01.2	Electrons do not spiral into the nucleus/line spectra of hydrogen suggest discrete energy levels	One piece of evidence	1	1	3.8.1.1
01.3	$\begin{aligned} \text { Decay constant }=\frac{\ln 2}{t_{1 / 2}} & =\frac{0.693}{1600 \times 3.15 \times 10^{7}} \\ & =1.37 \times 10^{-11} \mathrm{~s}^{-1} \end{aligned}$	Use of $\mathrm{t}_{1 / 2}$ Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.8.1.3
01.4	$\begin{aligned} & M=M_{0} e^{-\lambda t} \\ & t=120 \text { years }=120 \times 3.15 \times 10^{7}=3.78 \times 10^{7} \mathrm{~s} \end{aligned}$ mass of radium in sample $=0.58 \times 30.0 \mathrm{mg}=17.4 \mathrm{mg}$ $\begin{aligned} M & =17.4 \times e^{-1.37 \times 10^{-11} \times 3.78 \times 10^{7}} \\ & =17.4 \times e^{-0.052} \\ & =16.5 \mathrm{mg}=1.65 \times 10^{-4} \mathrm{~g} \end{aligned}$	Use of equation Answer	1 1 1	3	3.8.1.3
01.5		Calculation of number of atoms Answer	1 1	3	3.8.1.3
02.1	The probability of 'decay' is $1 / 2$, so in each throw, half the remaining tokens will 'decay', leaving half remaining The actual number does not match because throwing the sweets is a random process		1 1	1	3.8.1.3

A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
02.2	The number of tokens that 'decay' in each throw is ΔN If there are N remaining, then the number that 'decay' in Δt throws $=\lambda N \Delta t$, where $\lambda=$ probability of 'decay' $\Delta N=\lambda N \Delta t$ $\Delta N=\lambda N \Delta t$ The rate of 'decay' $=\frac{\Delta N}{\Delta t}=\lambda N$, so the rate of 'decay' is proportional to the number of 'undecayed' sweets	Indication of number decaying per throw related to λN Link between change in number per throw and λN	1 1	1	3.8.1.3
02.3	Matter/atoms/nuclei do not disappear/conservation of mass A spherical token cannot 'decay' so represents a stable atom; this represents decay to a stable isotope The four-sided token represents another unstable nucleus with a smaller probability of decay/longer half-life		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3	3.8.1.3
02.4	If the probability of decay is λ then λN will decay in each throw $\begin{aligned} & \lambda \times 250=250-219=31 \\ & \lambda=\frac{31}{250}=0.124 \end{aligned}$ Number of sides $=\frac{31}{0.124}=8$ Or Plot graph using:	Use of λ as probability from data or graph Changing probability to number of sides	1 1	3	3.8.1.3

A Level AQA Physics

19 Radioactivity - answers

A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
04.1	Put the source in front of a Geiger counter Place paper between the source and the counter, and the Geiger counter reading will not change Place a sheet of aluminium between the source and the counter, and the Geiger counter reading will not change	Use of paper with effect Use of aluminium with effect	1 1	1	3.8.1.2
04.2	With the source a long way from the Geiger counter, measure the background count in becquerels (counts per second) Place a source on a desk at the zero mark on a ruler Place a Geiger counter at a distance from the source and record the activity, in Becquerels, and the distance Repeat for different distances from the source Repeat the whole experiment three times and take an average activity for each distance Subtract the background count from each activity	Measurement of background count Repeated measurements of activity at different distances and mean taken Subtraction of background count	1 1 1	1	3.8.1.1
04.3		Graph plotted - points correct with straight line Appropriate scales/labels	1 1 1	2	3.8.1.2

[^0]
A Level AQA Physics

19 Radioactivity - answers

| Question | Answers | Extra information | Mark | AO |
| :--- | :--- | :--- | :---: | :---: | Spec reference

A Level AQA Physics

19 Radioactivity - answers

A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
	$\left.\begin{array}{rl} \text { Gradient of line } & =\frac{7.43-6.64}{A}=-6.58 \times 10^{-3} \mathrm{~min}^{-1} \\ \ln A & =\operatorname{An} A_{0}^{-1,20}-\lambda t \end{array}\right\} \begin{aligned} & \text { Gradient of line }=-\lambda \\ & \text { Half-life }=\frac{\ln 2}{\lambda}=\frac{0.693}{6.58 \times 10^{-3}}=105 \mathrm{~min} \text { OR } 6320 \mathrm{~s} \end{aligned}$		1		
06.3	Fluorine-18 The half-lives of the other isotopes are too short		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.8.1.3
06.4	Conservation of momentum If one gamma ray was emitted, momentum would not be conserved		1	1	3.2.1.7
06.5	Rest energy of positron is the same as that of the electron Total rest energy $=2 \times 0.510999 \mathrm{MeV}$ $\begin{aligned} & =2 \times 0.510999 \times 1.6 \times 10^{-13} \mathrm{~J} \\ & =1.635 \times 10^{-13} \mathrm{~J} \end{aligned}$ Energy of each gamma ray $=\frac{1.635 \times 10^{-13}}{2}=8.175 \times 10^{-14} \mathrm{~J}$ $E=h f \text { so } f=\frac{E}{h}=\frac{8.175 \times 10^{-14}}{6.63 \times 10^{-34}}=1.23 \times 10^{20} \mathrm{~Hz}$	Total energy Energy of each gamma Answer	1 1 1	2	3.2.1.3
06.6	No Neutrinos in beta decay are needed because of conservation of energy, but that is not needed in this annihilation		1	1	
07.1	Alpha particles are absorbed by the skin/would not get through body tissue to be detected outside the body		1	1	3.8.1.2
07.2	${ }_{86}^{210} \mathrm{Ra} \rightarrow{ }_{84}^{206} \mathrm{Po}+{ }_{2}^{4} \alpha$	Correct symbol for α Allow He for a Correct A and Z in equation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.2.1.2

A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.3	$\begin{aligned} \text { Alpha particle: } \left.\begin{array}{rl} A=4, R & =1.25 \times 10^{-15} \times 4^{\frac{1}{3}} \\ & =1.9(3) \times 10^{-15} \mathrm{~m} \\ \text { Radon: } \begin{array}{rl} A=210, R & =1.25 \times 10^{-15} \times 210^{\frac{-1}{3}} \\ & =7.3(9) \times 10^{-15} \mathrm{~m} \end{array} \end{array} . \begin{array}{rl} \end{array}\right) \end{aligned}$ Despite having a mass that is over 50 times larger, the radon nucleus is less than 4 times larger in terms of radius	Suitable comment	1 1 1	2	3.8.1.5
07.4	$\begin{aligned} & \text { Assuming } E=\frac{1}{2} m v^{2} \\ & \begin{aligned} & v=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{2 \times 6.4 \times 1.6 \times 10^{-13}}{4 \times 1.661 \times 10^{-27}}} \\ &=\sqrt{3.08 \times 10^{14}}=1.76 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.4.1.8
07.5	Conservation of momentum $\begin{aligned} & 0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=m_{\alpha} v_{\alpha}+m_{\mathrm{Po}} v_{\mathrm{Po}} \\ & v_{\mathrm{Po}}=\frac{-m_{\alpha} v_{\alpha}}{m_{\mathrm{Po}}}=\frac{-4 \times 1.76 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}}{206}=-3.4(2) \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Conservation of momentum (explicit or implied)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.4.1.6
07.6	The strong nuclear force will act between the constituent parts of the alpha particle and the nucleus/an external force acts		1	3	3.4.1.6
08.1	The half-life is short, so the water would not stay contaminated for very long in comparison with the other isotopes/it emits both beta and gamma radiation so can differentiate between different thicknesses of pipes		1 1	1 3	3.8.1.2
08.2	A neutron decays to a proton and an electron and an antineutrino/a down quark decays to an up quark and an antineutrino To an excited state of the nucleus, which decays emitting a gamma ray		1 1	1	3.2.1.2

A Level AQA Physics

19 Radioactivity - answers

Question	Answers	Extra information	Mark	AO	Spec reference
08.3	${ }_{11}^{24} \mathrm{Na} \rightarrow{ }_{12}^{24} \mathrm{Mg}+{ }_{-1}^{0} \beta+\bar{v}$ Conservation of lepton number: electron has a lepton number of +1 , an antineutrino has a lepton number of -1 $0=0+(+1)+(-1)$	Correct atomic mass numbers Correct atomic numbers Lepton numbers of electron and antineutrino Indication of conservation of lepton number	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.2.1.2
08.4	$\lambda=\frac{\ln 2}{t_{1 / 2}}=\frac{0.693}{15 \times 60 \times 60}=1.28 \times 10^{-5} \mathrm{~s}^{-1} \sim 1.3 \times 10^{-5} \mathrm{~s}^{-1}$		1	2	3.8.1.3
08.5	$\begin{aligned} & \text { Number of atoms }=\frac{1.3 \times 10^{-8} \mathrm{~g} \times 6.02 \times 10^{23}}{24}=3.26 \times 10^{14} \\ & A=\lambda N=1.28 \times 10^{-5} \times 3.26 \times 10^{14}=4.23 \times 10^{9} \mathrm{~Bq}=4.23 \mathrm{GBq} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.8.1.3
08.6	$\begin{aligned} & N=N_{0} \mathrm{e}^{-\lambda t} \text { so } A=A_{0} \mathrm{e}^{-\lambda t} \\ & \text { 'Safe' level }=50 \times 0.24=12 \mathrm{~Bq} \\ & \ln \left(\frac{N}{N_{0}}\right) \\ & t=\frac{\ln \left(4.23 \times 10^{9} \div 12\right)}{1.28 \times 10^{-5}}=1.53 \times 10^{6} \mathrm{~s} \\ & =\frac{17}{18} \text { days } \end{aligned}$ It will be diluted so that the dose will be much reduced	Use of $\ln A$ Answer in s or days Comment that includes use	1 1 1	3	3.8.1.3

A Level AQA Physics

19 Radioactivity - answers

Skills box answers

Question	Answer
$\mathbf{1}$	The source should not be handled directly: tongs should be used and gloves worn, and the source kept at arm's length when held. Time spent handling or close to the source should be kept to a minimum. Whenever the source is not in use it should be returned to its lead-lined box.
$\mathbf{2 (a)}$	Background count rate $=\frac{360}{(20 \times 60)}=0.3$ counts s ${ }^{-1}$
2(b)	Corrected count rate $=($ count rate - background) for each reading.
2(c)	Graph will be a straight-line graph with a gradient of 0.04 and intercept on y-axis of $0.11 \mathrm{~s}^{0.5}$.
2(d)	e is the x-intercept $=2.8 \mathrm{~cm}$.

[^0]: © Oxford University Press www.oxfordsecondary.com

