

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	Most of the alpha particles went through the gold foil but a few came back	Correct evidence	1	1	3.8.1.1
	This confirmed that most of the atom was empty space / very small massive nucleus	Indication of change from previous model	1		
01.2	Electrons do not spiral into the nucleus/line spectra of hydrogen suggest discrete energy levels	One piece of evidence	1	1	3.8.1.1
01.3	Decay constant = $\frac{\ln 2}{t} = \frac{0.693}{1600 \times 2.15 \times 107}$	Use of t_{ν_2}	1	2	3.8.1.3
	$= 1.37 \times 10^{-11} \mathrm{s}^{-1}$	Answer	1		
01.4	$M = M_0 e^{-\lambda t}$ t = 120 years = 120 × 3.15×10 ⁷ = 3.78×10 ⁷ s mass of radium in sample = 0.58 × 30.0 mg = 17.4 mg $M = 17.4 × e^{-1.37 \times 10^{-11} × 3.78 \times 10^{7}}$	Use of equation	1	3	3.8.1.3
	$= 17.4 \times \ell^{-3.022}$ = 16.5 mg = 1.65×10 ⁻⁴ g	Answer	1		
01.5	$A = -\lambda N$ Change in mass = 9.0×10 ⁻⁴ g Change in number of atoms = $\frac{6.0 \times 10^{23} \times 9.0 \times 10^{-4} \text{ g}}{226 \text{ g}} = 2.34 \times 10^{18} \text{ atoms}$ Change in activity = $-\lambda \Delta N$ = $1.37 \times 10^{-11} \times 2.34 \times 10^{18}$ = $3.2 \times 10^7 \text{ Bq}$	Calculation of number of atoms Answer	1	3	3.8.1.3
02.1	The probability of 'decay' is ½, so in each throw, half the remaining tokens will 'decay', leaving half remaining The actual number does not match because throwing the sweets is a random process		1 1	1	3.8.1.3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question			Answers	Extra information	Mark	AO	Spec reference
02.2	The number of If there are N re where $\lambda = \text{prob}$ $\Delta N = \lambda N \Delta t$ The rate of 'dee of 'undecayed'	tokens that 'de emaining, then bability of 'decay cay' = $\frac{\Delta N}{\Delta t} = \lambda N$, sweets	cay' in each throw is ΔN the number that 'decay' in Δt throws = $\lambda N \Delta t$, λ' so the rate of 'decay' is proportional to the number	Indication of number decaying per throw related to λN Link between change in number per throw and λN	1	1	3.8.1.3
02.3	Matter/atoms/ A spherical tok decay to a stab The four-sided probability of d	nuclei do not di en cannot 'deca de isotope token represen decay/longer ha	sappear/conservation of mass by' so represents a stable atom; this represents ts another unstable nucleus with a smaller lf-life		1 1 1	3	3.8.1.3
02.4	If the probabili $\lambda \times 250 = 250 - 100$ $\lambda = \frac{31}{250} = 0.124$ Number of side Or Plot graph usin	ty of decay is λ - 219 = 31 es = $\frac{31}{0.124}$ = 8 ng:	then λN will decay in each throw	Use of λ as probability from data or graph Changing probability to number of sides	1	3	3.8.1.3
	Throw	ln(number)					
	0	5.521461					
	1	5.389072					
	2	5.252273					
	3	5.117994					
	4	4.990433					

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
	$Gradient = \frac{5.52 - 4.99}{4} = 0.135$ Gradient = probability; number of sides = $\frac{31}{0.135} = 7.6$ So 8 sides to the dice				
03.1	Two sources such as: • medical sources such as X-rays • cosmic radiation • rocks such as granite • Sun/stars		2	1	3.8.1.2
03.2	$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0.693}{1.3 \times 10^9 \times 3.1 \times 10^7} = 1.72 \times 10^{-17} \mathrm{s}^{-1}$		1	2	3.8.1.3
03.3	$A = -\lambda N = 1.72 \times 10^{-17} \text{ s}^{-1} \times 8.7 \times 10^{17} = 1.5 \text{ Bq}$ Yes, it would be noticeable		1 1	2	3.8.1.3
03.4	The activity of the beta source is higher, but beta radiation is less ionising/less damaging to the cells of the human body/less likely to cause cancer		1	3	3.8.1.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.1	Put the source in front of a Geiger counter Place paper between the source and the counter, and the Geiger counter reading will not change Place a sheet of aluminium between the source and the counter, and the Geiger	Use of paper with effect Use of aluminium with effect	1	1	3.8.1.2
	counter reading will not change				
04.2	With the source a long way from the Geiger counter, measure the background count in becquerels (counts per second) Place a source on a desk at the zero mark on a ruler	Measurement of background count	1	1	3.8.1.1
	Place a Geiger counter at a distance from the source and record the activity, in Becquerels, and the distance Repeat for different distances from the source Repeat the whole experiment three times and take an average activity for	Repeated measurements of activity at different distances and mean taken	1		
	each distance Subtract the background count from each activity	Subtraction of background count	1		
04.3		Graph plotted – points correct with straight line Appropriate scales/labels	1	2	3.8.1.2
	ty counts min 200		1		
			1		
	0 5 10 15 20 25 30 35 40 45				
	$\frac{1}{d^2}$ / m ⁻²				

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
04.4	A graph of activity against $\frac{1}{(\text{distance})^2}$ is a straight line which does not go through (0, 0)	Use of <i>y</i> -intercept	1	2	3.8.1.2
	The <i>y</i> -intercept = background count	How to find the background count	1		
	Intercept = 7 counts min ⁻¹				
	Background count = $\frac{7}{60}$ = 0.12 Bq	Answer	1		
05.1	$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0.693}{1.3 \times 10^9 \times 365.25 \times 24 \times 60^2} = 1.70 \times 10^{-17} \mathrm{s}^{-1}$	Calculation of decay constant	1	2	3.8.1.3
	$A = \lambda N \text{ so } N = \frac{A}{\lambda}$ $N = \frac{0.48}{\lambda}$	Use of $A = \lambda N$	1		
	$= 2.84 \times 10^{16}$ atoms	Answer	1		
05.2	$N = N_0 e^{-\lambda t}$ $t = 3.2 \times 10^9 \times 365 \times 24 \times 60^2 = 1.01 \times 10^{17} \text{ s}$ $N_0 = \frac{N}{e^{-\lambda t}} = \frac{\text{student's answer from } 05.1}{e^{-(1.70 \times 10^{-17}) \times (1.01 \times 10^{17} \text{ s})}}$ $= 1.58 \times 10^{17} \text{ atoms when the rock formed}$	Use of equation to find original number of atoms	1	2	3.8.1.3
	Atoms of argon = $1.58 \times 10^{17} - 2.84 \times 10^{16} = 1.30 \times 10^{17}$ Mass = $\frac{40 \times 1.26 \times 10^{17}}{6.02 \times 10^{23}}$ = 8.62×10^{-6} g	Subtraction to find atoms of argon and answer	1		
	Assuming all the potassium decayed to argon / no argon was lost from the rock	One assumption	1		
05.3	If the potassium did not all decay to argon, there would be less argon than anticipated, and the sample would be deemed to be younger than it actually is	Reasoning for younger	1	3	3.8.1.3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question				Ansv	vers			Extra information	Mark	AO	Spec reference
05.4	If only 0 1 - 0.00 $N = N_0$).005 35 has 0 053 5 = 0.9 ^{λt}	decayed, that 999 947	means	the fraction rem	naining is		Fraction that has decayed	1	3	3.8.1.3
	$t = -\ln \left(\frac{1}{2} \right)$	$\left(\frac{N}{N_0}\right) \times \frac{1}{\lambda}$						Correct use of equation	1		
	= -ln((0.999947) ×	$\frac{1}{1.70 \times 10^{-17}} =$	3.11×1	0 ¹² s			Answer	1		
	= 98 79	94 years ~ 1	00 000 years								
06.1	Thick gloves will absorb alpha particles and some beta particles The lead in the glass will absorb/attenuate gamma rays (and α and β)						1 1	1	3.8.1.2		
06.2	Values	of ln(activit	y) calculated						1	2	3.8.1.3
	t	Activity	ln(activity)	87				Graph plotted – points correct with straight line	1		
	0	1682	7.43	7 -	******	****		Appropriate scales/labels			
	30	1392	7.24	6 -							
	60	1151	7.05	_							
	90	953	6.86	ity)							
	120	788	6.67	actic (actic							
				= 3 - 2 - 1 - 0 - C	20 40 tir	60 80 100 me/minutes) 120 140				

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
	Gradient of line = $\frac{7.43 - 6.64}{A_0^0 e^{-\lambda t^2 20}} = -6.58 \times 10^{-3} \text{ min}^{-1}$ $A = A_0^0 e^{-\lambda t^2 20}$ $\ln A = \ln A_0 - \lambda t$ Gradient of line = $-\lambda$ Half-life = $\frac{\ln 2}{\lambda} = \frac{0.693}{6.58 \times 10^{-3}} = 105 \text{ min OR } 6320 \text{ s}$		1		
06.3	Fluorine-18 The half-lives of the other isotopes are too short		1 1	3	3.8.1.3
06.4	Conservation of momentum If one gamma ray was emitted, momentum would not be conserved		1	1	3.2.1.7
06.5	Rest energy of positron is the same as that of the electron Total rest energy = 2×0.510999 MeV = $2 \times 0.510999 \times 1.6 \times 10^{-13}$ J = 1.635×10^{-13} J Energy of each gamma ray = $\frac{1.635 \times 10^{-13}}{1.635 \times 10^{-13}} = 8.175 \times 10^{-14}$ J	Total energy Energy of each gamma	1 1	2	3.2.1.3
	$E = hf \operatorname{so} f = \frac{E}{h} = \frac{8.175 \times 10^{-14}}{6.63 \times 10^{-34}} = 1.23 \times 10^{20} \mathrm{Hz}$	Answer	1		
06.6	No Neutrinos in beta decay are needed because of conservation of energy, but that is not needed in this annihilation		1	1	
07.1	Alpha particles are absorbed by the skin/would not get through body tissue to be detected outside the body		1	1	3.8.1.2
07.2	$^{210}_{86}Ra \rightarrow ^{206}_{84}Po + ^{4}_{2}\alpha$	Correct symbol for α Allow He for α Correct <i>A</i> and <i>Z</i> in equation	1 1	2	3.2.1.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.3	Alpha particle: $A = 4, R = 1.25 \times 10^{-15} \times 4^{\frac{1}{3}}$		1	2	3.8.1.5
	$= 1.9(3) \times 10^{-11}$ Radon: $A = 210, R = 1.25 \times 10^{-15} \times 210^{\overline{3}}$ = 7.3(9)×10 ⁻¹⁵ m		1		
	Despite having a mass that is over 50 times larger, the radon nucleus is less than 4 times larger in terms of radius	Suitable comment	1		
07.4	Assuming $E = \frac{1}{2}mv^2$		1	2	3.4.1.8
	$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 6.4 \times 1.6 \times 10^{-13}}{4 \times 1.661 \times 10^{-27}}}$		1		
	$= \sqrt{3.08 \times 10^{14}} = 1.76 \times 10^7 \mathrm{m s^{-1}}$				
07.5	Conservation of momentum $0 \text{ kg m s}^{-1} = m_{\alpha} \gamma_{\alpha} + m_{P_{\alpha}} \gamma_{P_{\alpha}}$	Conservation of momentum (explicit or implied)	1	3	3.4.1.6
	$v_{\rm Po} = \frac{-m_{\alpha}v_{\alpha}}{m_{\rm Po}} = \frac{-4 \times 1.76 \times 10^7 \mathrm{ms^{-1}}}{206} = -3.4(2) \times 10^5 \mathrm{ms^{-1}}$	(- F	1		
07.6	The strong nuclear force will act between the constituent parts of the alpha particle and the nucleus/an external force acts		1	3	3.4.1.6
08.1	The half-life is short, so the water would not stay contaminated for very long in comparison with the other isotopes/it emits both beta and gamma radiation so		1	1	3.8.1.2
	can differentiate between different thicknesses of pipes		1	3	
08.2	A neutron decays to a proton and an electron and an antineutrino/a down quark decays to an up quark and an antineutrino		1	1	3.2.1.2
	To an excited state of the nucleus, which decays emitting a gamma ray		1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
08.3	$\label{eq:alpha} \begin{array}{l} {}^{24}_{11}Na \rightarrow {}^{24}_{12}Mg + {}^{0}_{-1}\beta + \overline{\nu} \\ \\ \text{Conservation of lepton number: electron has a lepton number of +1, an} \\ \\ \text{antineutrino has a lepton number of -1} \\ \\ 0 = 0 + (+1) + (-1) \end{array}$	Correct atomic mass numbers Correct atomic numbers Lepton numbers of electron and antineutrino Indication of conservation of lepton number	1 1 1	2	3.2.1.2
08.4	$\lambda = \frac{\ln 2}{t_{\gamma_2}} = \frac{0.693}{15 \times 60 \times 60} = 1.28 \times 10^{-5} \mathrm{s}^{-1} \sim 1.3 \times 10^{-5} \mathrm{s}^{-1}$		1	2	3.8.1.3
08.5	Number of atoms = $\frac{1.3 \times 10^{-8} \text{ g} \times 6.02 \times 10^{23}}{24}$ = 3.26×10 ¹⁴ A = λN = 1.28×10 ⁻⁵ × 3.26×10 ¹⁴ = 4.23×10 ⁹ Bq = 4.23 GBq		1 1	2	3.8.1.3
08.6	$N = N_0 e^{-\lambda t} \text{ so } A = A_0 e^{-\lambda t}$ 'Safe' level = 50 × 0.24 = 12 Bq $t = \frac{\ln\left(\frac{N}{N_0}\right)}{\lambda} = \frac{\ln(4.23 \times 10^9 \div 12)}{1.28 \times 10^{-5}} = 1.53 \times 10^6 \text{ s}$	Use of ln A	1	3	3.8.1.3
	$=\frac{17}{18}$ days It will be diluted so that the dose will be much reduced	Answer in s or days	1 1		

۲

۲

۲

Skills box answers

۲

Question	Answer
1	The source should not be handled directly: tongs should be used and gloves worn, and the source kept at arm's length when held. Time spent handling or close to the source should be kept to a minimum. Whenever the source is not in use it should be returned to its lead-lined box.
2(a)	Background count rate = $\frac{360}{(20 \times 60)}$ = 0.3 counts s ⁻¹
2(b)	Corrected count rate = (count rate – background) for each reading.
2(c)	Graph will be a straight-line graph with a gradient of 0.04 and intercept on y -axis of 0.11 s ^{0.5} .
2(d)	e is the x-intercept = 2.8 cm.

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

