A Level AQA Physics

18 Electromagnetic induction - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Current flowing clockwise - use of Fleming's right hand rule	Allow anticlockwise of field lines pointing in wrong direction	1	$\begin{gathered} \text { 3.7.5.4 } \\ \text { AO2 } \end{gathered}$
01.2	Change in magnetic flux linkage as the conductor moves through the magnetic field $\text { e.m.f. induced }=\frac{N \Delta \phi}{\Delta t} /(\text { Faraday's law })$		1 1	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
01.3	e.m.f. induced $=\frac{N \Delta \phi}{\Delta t}=\frac{N B \Delta A}{\Delta t}$ and $N=1$ Area mapped out in time $t=l v t$ $\varepsilon=\frac{B l v t}{t}=B l v$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO3 } \end{gathered}$
01.4	$\begin{aligned} & \varepsilon=B l v \\ & B=\frac{\varepsilon}{l v}=\frac{45 \times 10^{-3}}{0.05 \times 15} \\ & B=0.06 \\ & B=0.06 \mathrm{~T} \text { or teslas } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \\ \text { AO1 } \end{gathered}$
02.1	The product of the magnetic flux and the area swept out by the conductor where B is normal to A Units: weber (weber turns)	Allow equation if terms defined	1 1	$\begin{gathered} \text { 3.7.5.3 } \\ \text { AO1 } \end{gathered}$
02.2	Coil shown vertical, horizontal, vertical, horizontal, vertical		1	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
02.3	Sine curve Positive sine curve		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
02.4	$\begin{aligned} & \omega=2 \pi f=2 \pi \times 50 \\ & \varepsilon=B A N \omega \sin \omega t=B A N \omega \\ & B=\frac{\varepsilon}{A N \omega}=\frac{0.45}{1.2 \times 10^{-3} \times 20 \times 2 \pi \times 50} \\ & B=0.06 \mathrm{~T} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

18 Electromagnetic induction - answers

Question	Answers	Extra information	Mark	AO Spec reference
03.1	Max 3 marks from: - ac current in wire produces changing/alternating magnetic flux - this induces a changing magnetic field in the iron core/iron core becomes magnetised - the changing magnetic flux linkage in the coils induces e.m.f./Faraday's law applied		$\max 3$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO3 } \end{gathered}$
03.2	E.m.f. induced is proportional to the rate of change of flux linkage/ $\varepsilon=\frac{N \Delta \phi}{\Delta t}$ (Faraday's law) Larger current means larger B OR greater change in magnetic flux linkage per second		1 1	$\begin{gathered} \text { 3.7.5.4 } \\ \text { AO2 } \end{gathered}$
03.3	Cable to lamp contains more than one wire / live and neutral Current in opposite directions so magnetic fields cancel out		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 \\ \text { AO3 } \end{gathered}$
03.4	Resolution refers to the smallest difference/change in the current it can give, in this case 0.1 mA Accuracy is how close to true value so, if reading 100 A , the actual value could be 98 or 102		1 1	$\begin{aligned} & 3.1 .2 \\ & \text { AO2 } \end{aligned}$
03.5	Detects the Earth's magnetic field/zeroing it allows magnetic flux due to current only to be detected Flux density depends on angle between clamp and the Earth's magnetic field		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.7 .5 \\ & \text { AO3 } \end{aligned}$
04.1	Max 3 marks from: - Adjust the time-base so that a complete wave can be seen on the screen - Move the wave left or right so that the start of a cycle is on a grid line - Adjust the y-amplification until the peak-to-peak of the wave is at a maximum - Move the wave up or down so that one of the peaks is on a line		$\max 3$	$\begin{gathered} 3.7 .5 .5 \\ \text { AO2 } \end{gathered}$
04.2	$\begin{aligned} & T=6 \mathrm{~cm} \times 0.2 \times 10^{-3}=1.2 \times 10^{-3} \mathrm{~S} \\ & f=\frac{1}{T}=830 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .5 \\ \text { AO1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

18 Electromagnetic induction - answers

Question	Answers	Extra information	Mark	AO Spec reference
04.3	$\begin{aligned} & \text { Peak-to-peak }=6 \text { squares } \\ & \text { Peak voltage }=3 \times 0.5=1.5 \mathrm{~V} \\ & V_{\text {rms }}=\frac{V_{0}}{\sqrt{2}}=\frac{1.5}{\sqrt{2}}=1.1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .5 \\ \text { AO1 } \\ \text { AO2 } \end{gathered}$
04.4	$P=\frac{V^{2} r m s}{R}=\frac{1.1^{2}}{20}=0.061 \mathrm{~W} \text { (} 0.056 \mathrm{~W} \text { using unrounded values) }$		1	$\begin{gathered} \text { 3.5.1.4 } \\ \text { AO2 } \end{gathered}$
05.1	$\begin{aligned} & \text { Use of } s=u t+\frac{1}{2} a t^{2} \text { and } u=0 \\ & t=\sqrt{\frac{2 s}{a}}=\sqrt{\frac{2 \times 0.32}{9.81}}=0.26 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.4.1.3 } \\ \text { AO2 } \end{gathered}$
05.2	The falling magnet causes a changing flux in the copper pipe/conductor/changing flux linkage This induces an e.m.f. in the copper pipe The e.m.f. is induced so that the current flows in a way to oppose the change that caused it		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.5.7.4 } \\ \text { AO2 } \end{gathered}$
05.3	Weight causes the magnet to accelerate downwards The downward movement induces the force that slows it down As it slows, the magnetic force decreases The forces acting on the magnet must be balanced/zero resultant force/weight = magnetic force		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.4.1.5 } \\ \text { AO3 } \end{gathered}$
05.4	Max 4 marks from: - the ac current produces a changing/alternating magnetic field/magnetic flux - this magnetises the iron clamp stand - induces an alternating/changing e.m.f. in the aluminium disc - the current flows so magnetic field opposes the change that caused it - repels the changing magnetic field of the coil so it hovers		$\max 4$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO3 } \end{gathered}$
05.5	The magnetic flux linkage would not change/magnetic flux is constant/need changing magnetic flux linkage to induce e.m.f. in the disc		1	$\begin{gathered} 3.7 .5 .4 \\ \text { AO22 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

18 Electromagnetic induction - answers

Question	Answers	Extra information	Mark	AO Spec reference
05.6	Nothing happens/stays still Although there is changing magnetic flux linkage, there is not a complete conductor	Allow no induced current as not complete conductor	1	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
06.1	$f=\frac{1}{T}=\frac{1}{0.02}=50 \mathrm{~Hz}$		1	$\begin{gathered} \text { 3.7.5.5 } \\ \text { AO1 } \end{gathered}$
06.2	$\begin{aligned} & N \phi=B A N \\ & A=\frac{N \phi}{B N}=\frac{3 \times 10^{-2}}{330 \times 0.06}=1.52 \times 10^{-3} \mathrm{~m}^{2} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 7.7.5.4 } \\ \text { AO3 } \end{gathered}$
06.3	$\begin{aligned} \varepsilon=B A N \omega \sin \omega t & =B A N \omega \\ & =B A N 2 \pi f \\ & =0.06 \times 1.5 \times 10^{-3} \times 330 \times 2 \pi \times 50 \\ & =9.4 \mathrm{~V} \end{aligned}$	Could also use tangent to the graph at 0.01 s	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 7.7 .5 .4 \\ \text { AO2 } \end{gathered}$
06.4	$\begin{aligned} & V_{\text {rms }}=\frac{V_{0}}{\sqrt{2}}=\frac{9.3}{\sqrt{2}}=6.6 \mathrm{~V} \\ & P=\frac{V_{\text {rms }}^{2}}{R}=\frac{6.6^{2}}{75}=0.59 \mathrm{~W} \end{aligned}$	Allow 1 mark for calculation of max power transfer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ 3.7 .5 .5 \\ 3.5 .1 .4 \\ \text { AO2 } \end{gathered}$
07.1	$\begin{aligned} & \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \\ & \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{400000}{25000}=16 \end{aligned}$		1	$\begin{gathered} \text { 3.7.5.6 } \\ \text { AO1 } \end{gathered}$
07.2	$\begin{aligned} & \text { Use of } P=I^{2} R \text { or } I=\frac{P}{V}=\frac{1500 \times 10^{6}}{400000}=3750 \mathrm{~A} \\ & P=3750^{2} \times 30=4.2 \times 10^{8} \mathrm{~W} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.5 .1 .4 \\ 3.7 .5 .6 \\ \text { AO2 } \end{gathered}$
07.3	$\begin{aligned} & \text { Efficiency }=\frac{\text { useful output power }}{\text { input power }} \\ & \text { Efficiency }=\frac{1500 \times 10^{6}-4.2 \times 10^{8}}{1500 \times 10^{6}}=0.72 \text { or } 72 \% \end{aligned}$	Possible e.c.f. from 07.2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.4.1.7 } \\ \text { AO1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

18 Electromagnetic induction - answers

| Question | Answers | Extra information |
| :--- | :--- | :--- | :---: | :---: |

A Level AQA Physics

18 Electromagnetic induction - answers

Question	Answers	Extra information	Mark
$\mathbf{0 8 . 3}$	How used: Primary coils could be placed in the middle of a charging lane, vehicles pass over them charging continuously Advantages: - increases range of car - many cars charged simultaneously Disadvantages - battery never fully charged - difficulty of positioning car over coils for max energy transfer/not efficient - cost of setting up system	Allow any sensible suggestions 1 mark for how used and max of 3 marks for advantages and disadvantages combined Full marks must include something from each heading	1AO3

Skills box answers

Question	Answer
$\mathbf{1}$	Plot a graph of $\cos \theta$ against e.m.f. Points are $(1,30),(0.98,29.4),(0.94,28.4),(0.87,26.1),(0.77,23.8),(0.64,19),(0.5,14.9),(0.34,10.4),(0.17,4.9)$.
$\mathbf{2}$	When the plane of the search coil is perpendicular to the field lines of the solenoid $\left(\theta=0^{\circ}\right)$ the induced e.m.f. is at its maximum. As the angle increases, the coil cuts fewer field lines and the signal on the oscilloscope drops to near zero.
$\mathbf{3}$	Flux linkage $=B A N \cos \theta=4.0 \times 10^{-6} \mathrm{~T} \times \pi\left(6 \times 10^{-3}\right)^{2} \times 25 \times 1=1.1 \times 10^{-8} \mathrm{~Wb}$ Plot a graph of $\cos \theta$ against e.m.f. Points are $(1,30),(0.98,29.4),(0.94,28.4),(0.87,26.1),(0.77,23.8),(0.64,19),(0.5,14.9),(0.34,10.4),(0.17,4.9)$.

