A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Reading will increase because the magnet will experience a downwards force/an equal and opposite force from the current (according to Newton's third law)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3.4.1.5 } \\ & \text { AO2 } \end{aligned}$
01.2	Max 3 from: - Use a variable resistor to change the current and an ammeter to measure - Record the change in mass on the balance - Record the length of wire in the magnetic field - measure using 15 cm ruler/callipers Accuracy: - Wire must be clamped securely so that it cannot move - Wire should be perpendicular to field - Tare the balance before the experiment begins Safety: - Wire may become hot - take readings quickly and turn off between each reading	Full marks only if safety/accuracy point included	$\max 3$	$\begin{gathered} 3.7 .5 .1 \\ \text { AO2 } \\ \text { AO1 } \end{gathered}$
01.3	Evidence of large triangle - or clear data points taken from graph e.g., $\frac{2.0-0.6}{5.4-2.6}=0.5 \pm 0.1 \mathrm{~g} \mathrm{~A}^{-1}$ or $5.0 \pm 0.1 \times 10^{-4} \mathrm{~kg} \mathrm{~A}^{-1}$ kgA^{-1}	Allow either 1 mark for correct units	1 1 1	$\begin{gathered} \text { MS3. } 4 \\ \text { AO2 } \end{gathered}$
01.4	$\begin{aligned} & \text { Use of } F=B I l \text { or } F=m g \\ & m g=B I l \\ & m=\frac{B l}{g} \times I \\ & \text { gradient }=\frac{B l}{g} \\ & \qquad B=\text { gradient } \times \frac{g}{l}=\left(5.0 \pm 0.1 \times 10^{-4}\right) \times \frac{9.81}{0.05}=0.098 \mathrm{~T} \end{aligned}$	possible follow through from value of gradient in 1.3	1 1 1	$\begin{gathered} \text { 3.7.5.1 } \\ \text { MS3.3 } \\ \text { AO3 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
02.1	$\Delta W=\Delta V Q=e V$ since e is charge on proton if this happens n times energy gained is neV		1	$\begin{gathered} 3.7 .3 .3 \\ \text { AO2 } \end{gathered}$
02.2	B field is into the page/perpendicular and into		1	$\begin{gathered} 3.7 .5 .1 \\ \text { AO1 } \end{gathered}$
02.3	Spiral path shown - exiting the cyclotron at some point		1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO2 } \end{gathered}$
02.4	Electric fields: - No acceleration - No electric field inside a conductor Magnetic fields: - Acceleration since changing direction so velocity changing - There is a force perpendicular to direction of motion/centripetal force provided by the magnetic field		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .2 \\ \text { AO2 } \\ \\ \\ 3.7 .5 .2 \\ 3.6 .1 .1 \end{gathered}$
02.5	$\begin{aligned} F & =\frac{m v^{2}}{r} \text { or } F=B q v \\ \frac{m v^{2}}{r} & =B q v \\ \frac{m v}{r} & =B q \\ v & =\frac{2 \pi r}{T} \text { and } T=\frac{1}{f} \text { so } v=2 \pi r f \\ \frac{m \times 2 \pi r f}{r} & =B q \\ m 2 \pi f & =B q \\ f & =\frac{B q}{2 \pi m} \end{aligned}$	Rearranging and cancelling must be clear in method 1 mark for each of: - Equating centripetal force with Bqv - Applying $f=\frac{1}{T}$ OR $f=\frac{2 \pi}{\omega}$ - Applying $v=\frac{2 \pi r}{T}$ OR $2 \pi r f$ OR $v=r \omega$ - Clear algebraic working	1 1 1 1	$\begin{gathered} 3.6 .1 .1 \\ 3.7 .5 .2 \\ \text { AO2 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
02.6	Cyclotron frequency will decrease as the acceleration will be less ($a=\frac{F}{m}$) so velocity and hence period will increase		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.5.1.4 } \\ \text { AO3 } \end{gathered}$
03.1	Electric field provides force to the right Force due to E field $=q E$ Magnetic field provides force to the left Force due to B field = Bqv When forces are equal the ion can enter/ion undeflected $\begin{aligned} q E & =B q v \\ v & =\frac{E}{B} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1	$\begin{gathered} 3.7 .3 .2 \\ 3.7 .5 .2 \\ \text { AO3 } \end{gathered}$
03.2	$\begin{aligned} & v=\frac{E}{B} \\ & E=v B=0.1 \times 4.2 \times 10^{5} \\ & E=\frac{V}{d} \\ & d=\frac{V}{E}=\frac{400}{0.1 \times 4.2 \times 10^{5}} \\ & d=0.0095 \mathrm{~m} \mathrm{(0.01m)} \end{aligned}$		1 1	$\begin{gathered} 3.7 .3 .2 \\ \text { AO2 } \end{gathered}$
03.3	$\begin{aligned} F & =\frac{m v^{2}}{r} \text { or } F=B q v \\ \frac{m v^{2}}{r} & =B q v \\ \frac{m v}{r} & =B q \\ r & =\frac{m v}{B q} \end{aligned}$		1 1	$\begin{gathered} 3.6 .1 .1 \\ 3.7 .5 .2 \\ \text { AO2 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
03.4	$\begin{aligned} & r=\frac{m v}{B q} \\ & \Delta r=\frac{(43.9-39.9) \times 1.661 \times 10^{-27} \mathrm{~kg} \times 4.2 \times 10^{5}}{1.1 \times 1.6 \times 10^{-19}} \\ & \Delta r=0.016 \mathrm{~m} \end{aligned}$		1 1	$\begin{gathered} 3.8 .1 .6 \\ 3.7 .5 .2 \\ \text { AO2 } \end{gathered}$
04.1	Max 2 from: - The search coil is detecting induced e.m.f. in the coils - There must be a changing magnetic flux linkage - a.c. current in large coil means a changing magnetic field - Mention of Faraday's law		1 1	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
04.2	Angle between search coil and magnetic field: - Protractor/protractor card fixed to surface - Sensible method of reducing parallax errors, e.g. use of clamp to hold protractor beneath search coil/ruler and set square arrangement E.m.f. induced from the oscilloscope screen: - Choose suitable scale to maximise trace - Peak-to-peak reading divided by 2 - Multiply number of divisions by volts per div scale		$\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { PS4.1 } \\ \text { AO3 } \end{gathered}$
04.3	Graph of e.m.f. versus $\cos \theta$ with suitable line of best fit Axes labelled with units Suitable scales chosen (data should be at least half graph paper)	If e.m.f. versus θ plotted lose one mark	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .3 \\ 3.7 .5 .4 \\ \text { AO3 } \end{gathered}$
04.4	Need to determine intercept to check relationship - $\begin{aligned} & \text { gradient }=\frac{155-128}{0.97-0.79}=150 \pm 4 \\ & \text { Intercept: } y=m x+c \\ & 155-(150 \times 0.97)=c \\ & c=9.5 \end{aligned}$	If θ graph drawn allow one mark for stating it is cosine graph	1 1	$\begin{gathered} \text { MS3.3 } \\ \text { MS3.4 } \\ \text { AO2 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
	Conclusion: this does prove the relationship as this is a straight line through the origin but there must be a systematic error OR This does not prove the relationship as there is not a straight line through the origin	Allow either conclusion with justification, i.e., what they are looking for	1	
05.1	$\begin{aligned} & \text { Area }=\pi r^{2}=\pi \times 0.9 \times 10^{-2} \\ & \phi=B A=5.0 \times 10^{-3} \times\left(\pi \times 0.9 \times 10^{-2}\right)^{2} \\ & \phi=1.3 \times 10^{-6} \\ & \text { Wb or webers } \end{aligned}$		1 1 1	$\begin{gathered} \text { 3.7.5.3 } \\ \text { AO2 } \end{gathered}$
05.2	$\begin{aligned} & \phi=B A \cos \theta=5.0 \times 10^{-3} \times\left(\pi \times 0.9 \times 10^{-2}\right)^{2} \cos 40 \\ & \phi=9.7 \times 10^{-7}(\mathrm{~Wb}) \end{aligned}$		1	$\begin{gathered} \text { 3.7.5.3 } \\ \text { AO2 } \end{gathered}$
05.3	$\begin{aligned} & \varepsilon=N \frac{\Delta \phi}{\Delta t} \\ & \varepsilon=5000 \times \frac{1.3 \times 10^{-6}-9.7 \times 10^{-7}}{0.2} \\ & \varepsilon=0.0083 \mathrm{~V} \end{aligned}$	e.c.f. from 05.2 ignore minus sign	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO2 } \end{gathered}$
05.4	A large e.m.f. would be induced in the coil (larger than in 05.3) Rapid change in magnetic flux linkage $\varepsilon=N \frac{\Delta \phi}{\Delta t}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .4 \\ \text { AO3 } \end{gathered}$
06.1	$\begin{aligned} & F=B q v \\ & \text { Electrons move to the right/towards } \mathrm{Y} / \text { away from } \mathrm{X} \\ & \text { Fleming's left hand rule } \end{aligned}$	$2^{\text {nd }}$ mark for direction and explanation	1 1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO1 } \end{gathered}$
06.2	On Figure 8 left-hand side marked as positive and right-hand side marked as negative	Allow an answer consistent with their answer to 06.1, i.e., if they think electrons move to left allow reverse labels	1	$\begin{gathered} 3.7 .3 .2 \\ \text { AO1 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
06.3	Force due to magnetic field = force due to electric field $B q v=E q$ Since uniform field $E=\frac{V}{d}$ $\begin{aligned} & B q v=\frac{B q}{d} \\ & B v d=V \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .2 \\ 3.7 .3 .2 \\ \text { AO2 } \end{gathered}$
06.4	$\begin{aligned} & V_{\mathrm{H}}=B v d \text { and } v=\frac{I}{n A e} \\ & V_{\mathrm{H}}=\frac{B d I}{n A e} \\ & V_{\mathrm{H}}=\frac{B d I}{n d t e}=\frac{B I}{n t e} \end{aligned}$		1 1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO3 } \end{gathered}$
06.5	$V_{\mathrm{H}}=\frac{B I}{n t e}$ all other values constant $V_{\mathrm{H}} \propto \frac{1}{n}$ So V_{H} greater, easier to detect magnetic flux density.		1 1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO3 } \end{gathered}$
07.1	micrometer/digital calliper measuring several places along length and finding mean		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Ate PS4.1 AO1
07.2	$\begin{aligned} & \rho=\frac{M}{V} \\ & M=\rho \times V=2700 \times 15 \times 10^{-3} \times 50 \times 10^{-3} \times 0.02 \times 10^{-3} \\ & M=4.05 \times 10^{-5} \mathrm{~kg} \end{aligned}$		1 1	$\begin{gathered} 3.4 .2 .1 \\ \text { AO2 } \end{gathered}$
07.3	$\begin{aligned} & \text { use of } F=B I l \text { or } W=m g \\ & I=\frac{m g}{B l}=\frac{4.05 \times 10^{-5} \mathrm{~kg} \times 9.81}{0.03 \times 0.05} \\ & I=0.26 \mathrm{~A} \end{aligned}$		1 1	$\begin{gathered} 3.7 .5 .1 \\ \mathrm{AO2} \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

17 Magnetic fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Diagram showing field perpendicular to current Direction and current such that foil feels upwards force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .5 .1 \\ \text { AO1 } \end{gathered}$
08.1	Crosses drawn on the diagram - uniformly placed - at least 4		1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO1 } \end{gathered}$
08.2	Ion feels a resultant force perpendicular to direction of motion Provides centripetal force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.6 .1 .1 \\ \text { AO1 } \end{gathered}$
08.3	$\begin{aligned} F & =\frac{m v^{2}}{r} \text { or } F=B q v \\ \frac{m v^{2}}{r} & =B q v \\ \frac{m v}{r} & =B q \\ r & =\frac{m v}{B q} \end{aligned}$		1 1	$\begin{gathered} 3.6 .1 .1 \\ 3.7 .5 .2 \\ \mathrm{AO2} \end{gathered}$
08.4	Circle starting at P but then with a greater radius arriving at a point further to the right than R		1	$\begin{gathered} 3.7 .5 .2 \\ \mathrm{AO2} \end{gathered}$
08.5	$\begin{aligned} & \frac{r_{1}}{m_{1}}=\frac{r_{2}}{m_{2}} \\ & r_{2}-r_{1}=0.2 \mathrm{~mm} \\ & r_{2}-r_{2} \frac{m_{1}}{m_{2}}=0.2 \\ & r_{2}\left(1-\frac{m_{1}}{m_{2}}\right)=0.2 \\ & r_{2}\left(1-\frac{10.012937 \mathrm{u}}{11.009305 \mathrm{u}}\right)=0.2 \\ & r_{2}=2.2 \mathrm{~m} \\ & d=2 \times 2.2=4.4 \mathrm{~m} \end{aligned}$	Award for appreciation r proportional to m	1 1 1 1	$\begin{gathered} 3.7 .5 .2 \\ \text { AO3 } \end{gathered}$

A Level AQA Physics

17 Magnetic fields - answers

Skills box answers

Question	Answer
$\mathbf{1}$	Draw a graph using the data. Note that the mass is given in grams and needs to be converted to kg . The gradient of the graph is $4.0 \times 10^{-4} \mathrm{kgA}^{-1}$. This gives a magnetic field of 0.08 T.
$\mathbf{2}$	The variable resistor is used to limit the current through the wire and to prevent it overheating.
$\mathbf{3}$	The force will be reduced because $F=B I L \sin \theta$ and now θ is less than 90°

