

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Reading will increase because the magnet will experience a downwards force/an equal and opposite force from the current (according to Newton's third law)		1 1	3.4.1.5 AO2
01.2	 Max 3 from: Use a variable resistor to change the current and an ammeter to measure Record the change in mass on the balance Record the length of wire in the magnetic field – measure using 15 cm ruler/callipers 	Full marks only if safety/accuracy point included	max 3	3.7.5.1 AO2 AO1
	 Accuracy: Wire must be clamped securely so that it cannot move Wire should be perpendicular to field Tare the balance before the experiment begins 			
	Safety: • Wire may become hot – take readings quickly and turn off between each reading			
01.3	Evidence of large triangle – or clear data points taken from graph e.g., $\frac{2.0 - 0.6}{2.0 - 0.1} = 0.5 \pm 0.1 \text{ g A}^{-1}$	Allow either	1	MS3.4 AO2
	5.4 - 2.6		1	
	kg A ⁻¹	1 mark for correct units	1	
01.4	Use of $F = BIl$ or $F = mg$ mg = BIl $m = \frac{Bl}{g} \times I$ Bl	possible follow through from value of gradient in 1.3	1	3.7.5.1 MS3.3 AO3
	gradient = $\frac{B^4}{g}$ B = gradient × $\frac{g}{l}$ = (5.0 ± 0.1 × 10 ⁻⁴) × $\frac{9.81}{0.05}$ = 0.098 T		1 1	

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.1	$\Delta W = \Delta VQ = eV$ since e is charge on proton if this happens n times energy gained is neV		1	3.7.3.3 AO2
02.2	B field is into the page/perpendicular and into		1	3.7.5.1 AO1
02.3	Spiral path shown – exiting the cyclotron at some point		1	3.7.5.2 AO2
02.4	 Electric fields: No acceleration No electric field inside a conductor Magnetic fields: Acceleration since changing direction so velocity changing There is a force perpendicular to direction of motion/centripetal force provided 		1 1 1	3.7.3.2 AO2 3.7.5.2 3.6.1.1
02.5	by the magnetic field $F = \frac{mv^2}{r} \text{ or } F = Bqv$ $\frac{mv^2}{r} = Bqv$ $\frac{mv}{r} = Bq$ $v = \frac{2\pi r}{T} \text{ and } T = \frac{1}{f} \text{ so } v = 2\pi rf$ $\frac{m \times 2\pi rf}{T} = Bq$	Rearranging and cancelling must be clear in method 1 mark for each of: • Equating centripetal force with Bqv • Applying $f = \frac{1}{T} OR f = \frac{2\pi}{\omega}$ • Applying $v = \frac{2\pi r}{T} OR 2\pi r f OR$	1 1 1 1	3.6.1.1 3.7.5.2 AO2
	r $m2\pi f = Bq$ $f = \frac{Bq}{2\pi m}$	 ν = rω Clear algebraic working 		

۲

© Oxford University Press www.oxfordsecondary.com

۲

 (\bullet)

Question	Answers	Extra information	Mark	AO Spec reference
02.6	Cyclotron frequency will decrease as the acceleration will be less ($a = \frac{F}{m}$) so velocity and hence period will increase		1 1	3.5.1.4 AO3
03.1	Electric field provides force to the <u>right</u> Force due to <i>E</i> field = qE Magnetic field provides force to the <u>left</u>		1 1	3.7.3.2 3.7.5.2 AO3
	Force due to <i>B</i> field = Bqv When forces are equal the ion can enter/ion undeflected qE = Bqv		1	
	$v = \frac{E}{B}$		1	
03.2	$v = \frac{E}{B}$		1	3.7.3.2 AO2
	$E = vB = 0.1 \times 4.2 \times 10^5$		1	
	$E = \frac{v}{d}$			
	$d = \frac{V}{E} = \frac{400}{0.1 \times 4.2 \times 10^5}$			
03.3	$E = \frac{mv^2}{2}$		1	3.6.1.1
	$r - \frac{r}{r} O(r - Bqv)$ mv^2			3.7.5.2
			1	702
	r = Bq			
	$r = \frac{m}{Bq}$			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.4	$r = \frac{m\nu}{Bq}$		1	3.8.1.6 3.7.5.2
	$\Delta r = \frac{(43.9 - 39.9) \times 1.661 \times 10^{-27} \text{ kg} \times 4.2 \times 10^{3}}{1.1 \times 1.6 \times 10^{-19}}$ $\Delta r = 0.016 \text{ m}$		1	A02
04.1	 Max 2 from: The search coil is detecting induced e.m.f. in the coils There must be a changing magnetic flux linkage 		1	3.7.5.4 AO2
	 a.c. current in large coil means a changing magnetic field Mention of Faraday's law 			
04.2	 Angle between search coil and magnetic field: Protractor/protractor card fixed to surface Sensible method of reducing parallax errors, e.g. use of clamp to hold protractor beneath search coil/ruler and set square arrangement E.m.f. induced from the oscilloscope screen: Choose suitable scale to maximise trace Peak-to-peak reading divided by 2 Multiply number of divisions by volts per div scale 		1 1 1 1	PS4.1 AO3
04.3	Graph of e.m.f. versus $\cos \theta$ with suitable line of best fit Axes labelled with units Suitable scales chosen (data should be at least half graph paper)	If e.m.f. versus θ plotted lose one mark	1 1 1	3.7.5.3 3.7.5.4 AO3
04.4	Need to determine intercept to check relationship – gradient = $\frac{155 - 128}{0.97 - 0.79} = 150 \pm 4$ Intercept: $y = mx + c$ $155 - (150 \times 0.97) = c$ c = 9.5	If θ graph drawn allow one mark for stating it is cosine graph	1	MS3.3 MS3.4 AO2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
	Conclusion: this does prove the relationship as this is a straight line through the origin but there must be a systematic error OR This does not prove the relationship as there is not a straight line through the origin	Allow either conclusion with justification, i.e., what they are looking for	1	
05.1	Area = $\pi r^2 = \pi \times 0.9 \times 10^{-2}$ $\phi = BA = 5.0 \times 10^{-3} \times (\pi \times 0.9 \times 10^{-2})^2$ $\phi = 1.3 \times 10^{-6}$ Wb or webers		1 1 1	3.7.5.3 AO2
05.2	$\phi = BA \cos \theta = 5.0 \times 10^{-3} \times (\pi \times 0.9 \times 10^{-2})^2 \cos 40$ $\phi = 9.7 \times 10^{-7}$ (Wb)		1	3.7.5.3 AO2
05.3	$\varepsilon = N \frac{\Delta \phi}{\Delta t}$ $\varepsilon = 5000 \times \frac{1.3 \times 10^{-6} - 9.7 \times 10^{-7}}{0.2}$ $\varepsilon = 0.0083 \text{ V}$	e.c.f. from 05.2 ignore minus sign	1 1	3.7.5.4 AO2
05.4	A large e.m.f. would be induced in the coil (larger than in 05.3) Rapid change in magnetic flux linkage $\varepsilon = N \frac{\Delta \phi}{\Delta t}$		1 1	3.7.5.4 AO3
06.1	<i>F</i> = <i>Bqv</i> Electrons move to the right/towards Y/away from X Fleming's left hand rule	2 nd mark for direction and explanation	1 1	3.7.5.2 AO1
06.2	On Figure 8 left-hand side marked as positive and right-hand side marked as negative	Allow an answer consistent with their answer to 06.1 , i.e., if they think electrons move to left allow reverse labels	1	3.7.3.2 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.3	Force due to magnetic field = force due to electric field		1	3.7.5.2
	Bqv = Eq Since uniform field $E = \frac{V}{V}$		1	3.7.3.2 AO2
	$Bqv = \frac{Bq}{d}$		1	
	Bvd = V			
06.4	$V_{\rm H} = Bvd$ and $v = \frac{I}{I}$		1	3.7.5.2
	$V_{\rm H} = \frac{BdI}{1}$ nAe		1	AO3
	BdI BI			
	$V_{\rm H} = \frac{1}{ndte} = \frac{1}{nte}$			
06.5	$V_{\rm H} = \frac{BI}{I}$		1	3.7.5.2
	all other values constant		1	AU3
	$V_{\rm H} \propto \frac{1}{n}$			
	So $V_{\rm H}$ greater, easier to detect magnetic flux density.			
07.1	micrometer/digital calliper		1	Ate
	measuring several places along length and miding mean		L	AO1
07.2	$\rho = \frac{M}{M}$		1	3.4.2.1
	$M = \rho \times V = 2700 \times 15 \times 10^{-3} \times 50 \times 10^{-3} \times 0.02 \times 10^{-3}$		1	AO2
	$M = 4.05 \times 10^{-5} \text{kg}$		-	
07.3	use of $F = BIl$ or $W = mg$		1	3.7.5.1 AO2
	$I = \frac{mg}{Bl} = \frac{4.05 \times 10^{-10} \text{ kg} \times 5.01}{0.03 \times 0.05}$		1	102
	<i>I</i> = 0.26 A			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Diagram showing field perpendicular to current Direction and current such that foil feels upwards force		1 1	3.7.5.1 AO1
08.1	Crosses drawn on the diagram – uniformly placed – at least 4		1	3.7.5.2 AO1
08.2	Ion feels a resultant force perpendicular to direction of motion Provides centripetal force		1 1	3.6.1.1 AO1
08.3	$F = \frac{mv^2}{r} \text{ or } F = Bqv$ $\frac{mv^2}{r} = Bqv$ $\frac{mv}{r} = Bq$ $r = \frac{mv}{Bq}$		1	3.6.1.1 3.7.5.2 AO2
08.4	Circle starting at P but then with a greater radius arriving at a point further to the right than R		1	3.7.5.2 AO2
08.5	$\frac{r_1}{m_1} = \frac{r_2}{m_2}$ $r_2 - r_1 = 0.2 \text{ mm}$ $r_2 - r_2 \frac{m_1}{m_2} = 0.2$ $r_2 (1 - \frac{m_1}{m_2}) = 0.2$ $r_2 (1 - \frac{10.012937 \text{ u}}{11.009305 \text{ u}}) = 0.2$ $r_2 = 2.2 \text{ m}$ $d = 2 \times 2.2 = 4.4 \text{ m}$	Award for appreciation <i>r</i> proportional to <i>m</i>	1 1 1 1	3.7.5.2 AO3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Skills box answers

۲

Question	Answer
1	Draw a graph using the data. Note that the mass is given in grams and needs to be converted to kg. The gradient of the graph is 4.0×10^{-4} kg A ⁻¹ . This gives a magnetic field of 0.08 T.
2	The variable resistor is used to limit the current through the wire and to prevent it overheating.
3	The force will be reduced because $F = BIL \sin \theta$ and now θ is less than 90°

۲

۲

