

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Direction of arrow from centre of gold nucleus outwards	Judge by eye	1	3.7.1 AO1
01.2	6.2 MeV = $6.2 \times 10^6 \times 1.6 \times 10^{-19} \text{ J}$ $E_k = \frac{1}{2} m v^2$		1 1	3.1.1 3.2.1.2 AO2
	$v^{2} = \frac{2 \times E_{k}}{m} = \frac{2 \times 6.2 \times 10^{6} \times 1.6 \times 10^{-19}}{6.64 \times 10^{-27} \text{ kg}}$ v = 1.73×10 ⁷ m s ⁻¹			
01.3	$\Delta W = Q\Delta V \text{ so EPE} = V \times Q$ $\frac{1}{2}mv^2 = \frac{Qq}{4\pi\varepsilon_0 r}$	Must be clear how the 4 cancelled – watch for 2 disappearing	1 1	3.7.3.3 AO3
	$\frac{1}{2}mv^2 = \frac{Ze \times 2e}{4\pi\varepsilon_0 r_c}$ $r_c = \frac{Ze^2}{\pi\varepsilon_0 mv^2}$		I	
01.4	Z = 79 $r_{c} = \frac{Ze^{2}}{\pi\varepsilon_{0}mv^{2}} = \frac{79 \times (1.6 \times 10^{-19})^{2}}{\pi \times 8.85 \times 10^{-12} \times 6.64 \times 10^{-27} \times (1.73 \times 10^{7})^{2}}$ $r_{c} = 3.7 \times 10^{-14}$	allow e.c.f. from 01.2 if Z = 197 is used, deduct one mark (then $r_{\rm c}$ would = 9.13 $ imes$ 10 ⁻¹⁴)	1	3.7.3.3 AO2
02.1	Lines leaving spheres perpendicular to surface Arrows point away from positive Suitable pattern between repelling spheres		1 1 1	3.7.3.2 AO1

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.2	One problem with One related solution		1	PS1.1 ATc AO3
	Use wooden/plastic ruler Difficulty in measuring distances between curved objects Set up ruler with set squares fixed or use light and measure distance between shadows		1	
02.3	$F \propto \frac{1}{r^2} \text{ or } F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$		1	3.7.3.1 AO2
	Data tested for at least 3 data sets and conclusion e.g. $0.02^2 \times (0.0827 \times 9.81) = 3.2 \times 10^{-4} (\text{N m}^2)$	Constant = 33 000 g mm² (if you	1	
	$0.025^2 \times 0.053 \times 9.81 = 3.2 \times 10^{-4}$ $0.030^2 \times 0.0368 \times 9.81 = 3.2 \times 10^{-4}$	don't change units)	1	
02.4	$F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$ $Q^2 = Fr^2 4\pi\varepsilon_0$	Allow using a pair of values from table for full marks	1	3.7.3.1 AO2
	$Q^{2} = 3.2 \times 10^{-4} \times 4\pi \times 8.85 \times 10^{-12}$ $Q = 1.9 \times 10^{-7}$ C		1	
03.1	The potential difference between the lines is constant but the distance is not		1	3.7.3.3 AO2
03.2	At least 4 lines drawn perpendicular to surface of the cable and equipotentials Arrows pointing away from the cable		1 1	3.7.3.2 AO1
03.3	$V \propto \frac{1}{r}$		1	3.7.3.3 AO2
	Vr = constant $300 \times 10 = 200 \times d$ d = 15 cm		1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.4	P is at a distance of 12.5 cm $300 \times 10 = 12.5 \times V$		1	3.7.3.3 AO2
	V=240V		1	
04.1	At least 6 lines drawn – equidistant Arrows pointing down	ignore field outside/near edge of plates	1 1	3.7.3.2 AO1
04.2	Path deflected upwards	Ignore size of deflection	1	3.7.3.2 AO1
04.3	Use of $E = \frac{F}{Q} = \frac{V}{d}$ or $F = ma$		1	3.7.3.2 3.4.1.5
	$F = \frac{VQ}{d}$		1	AO2
	$ma = \frac{VQ}{d}$ $a = \frac{VQ}{md}$		1	
	$a = \frac{1500 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31} \times 0.025} = 1.1 \times 10^{16} \mathrm{m s^{-2}}$			
04.4	Time between plates = $\frac{\text{length of plates}}{\text{speed of electrons}}$	Use of rounded numbers gives s = 8.5 mm and so final answer	1	3.4.1.4 AO2
	$t = \frac{0.01}{3 \times 10^7} = 1.3 \times 10^{-9} \mathrm{s}$	– 4 mm		
	Use of <i>suvat</i> for vertical displacement		1	
	$s = ut + \frac{1}{2}at^2$ and $u = 0$		1	
	$s = \frac{1}{2} \times 1.1 \times 10^{16} \times (1.3 \times 10^{-9})^2$		1	
	s = 0.01 m = 10 mm or 0.0098 m = 9.8 mm			
	Distance from top plate = 12.5 mm – 10 mm = 2.5 mm (or 2.7 mm)			

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.1	Use of $C = \frac{Q}{V}$	Clear substitution seen for second mark	1	3.7.4.1 3.7.3.3
	$V = \frac{Q}{4\pi\varepsilon_0 R}$ $C = Q \times \frac{4\pi\varepsilon_0 R}{Q} = 4\pi\varepsilon_0 R$		1	AO2
05.2	$C = 4\pi\epsilon_0 R = 4 \times \pi \times 8.85 \times 10^{-12} \times 0.20 = 2.2 \times 10^{-11}$ F (Farads)		1 1	3.7.4.1 AO1
05.3	$E = \frac{V}{r}$ $V = Er = 3 \times 10^6 \times 0.20 = 6 \times 10^5 \text{ V}$		1 1	3.7.3.2 AO2
05.4	Use of $Q = VC = 2.2 \times 10^{-11} \times 6 \times 10^5 = 1.3 \times 10^{-5} \text{ C}$ Number of excess charges $= \frac{1.3 \times 10^{-5} \text{ C}}{1.6 \times 10^{-19} \text{ C}} = 8.3 \times 10^{13}$	Be aware of possible e.c.f. from answer to 05.2 and 05.3 Could also use $V = \frac{Q}{4\pi\epsilon_0 R}$	1 1	3.7.4.1 AO2
06.1	$F = \frac{Q_1 Q_2}{4\pi\epsilon_0 R^2}$ $F = \frac{(1.6 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (5.3 \times 10^{-11})^2}$ $F = 8.2 \times 10^{-8} N$		1	3.7.3.1 AO2
06.2	8.2×10 ⁻⁸ N	e.c.f. same as 06.1 ignore minus sign	1	3.7.3.1 AO1
06.3	F = ma $a = \frac{F}{m} = \frac{8.2 \times 10^{-8} \text{N}}{9.11 \times 10^{-31} \text{kg}} = 9.0 \times 10^{22} \text{m s}^{-2}$		1	3.4.1.5 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.4	Total energy, $E = E_k + E_p$	Also credit for full marks use of	1	3.7.3.3
	$\Delta W = Q\Delta V$ $E = \frac{1}{2}mv^2 - \frac{e^2}{4\pi\varepsilon_0 r}$ $mv^2 = \frac{e^2}{e^2}$	$\frac{1}{2}mv^{2} \text{ and}$ $V = \frac{Q}{4\pi\varepsilon_{0}r} (E_{p} = Q \frac{Q}{4\pi\varepsilon_{0}r})$	1	3.1.1 AO3
	since $\frac{1}{r} = \frac{1}{4\pi\varepsilon_0 r^2}$ $mv^2 = \frac{e^2}{4\pi\varepsilon_0 r}$		1	
	$E = \frac{e^2}{2 \times 4\pi\varepsilon_0 r} - \frac{e^2}{4\pi\varepsilon_0 r} = -\frac{e^2}{8\pi\varepsilon_0 r}$ $E = \frac{(1.6 \times 10^{-19})^2}{(1.6 \times 10^{-19})^2}$			
	$E = \frac{4\pi \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11}}{4\pi \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11}}$ $E = \frac{2.2 \times 10^{-18} \text{ J}}{1.6 \times 10^{-19} \text{ J}} = 13.57 \text{ eV}$		1	
07.1	Lines drawn at $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ points and correctly labelled		1	3.7.3.3 AO1
07.2	$E = \frac{V}{d}$ = $\frac{40}{0.01}$ = 400 V m ⁻¹		1 1	3.7.3.2 AO1
07.3	$\Delta W = Q \Delta V$ = 1.6×10 ⁻¹⁹ × 40 V = 6.4×10 ⁻¹⁸ J		1	3.7.3.3 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

 (\bullet)

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Max 3 from: Electron is attracted by B/repelled by A/experiences force to the right Electron decelerates (initially) Electron does not reach A/stops/reverses direction Stops at half way point (20 eV) When it returns it has 20 eV		max 3	3.7.3.3 AO3
08.1	Is the work done per unit positive charge when it is moved from infinity to that point	Must include positive	1	3.7.3.3 AO1
08.2	$V \propto \frac{1}{r}$ Vr = constant		1	3.7.3.3 AO2
	Data checked at least three times and conclusion, e.g. $1800 \times 0.01 = 18$ $600 \times 0.03 = 18$		1	
	$300 \times 0.06 = 18$		1	
08.3	$V = \frac{Q}{4\pi\varepsilon_0 r}$ $Q = V \times 4\pi\varepsilon_0 r = 18 \times 4 \times \pi \times 8.85 \times 10^{-12}$ $Q = 2.0 \times 10^{-9} C$ $Q = 2 nC$		1	3.7.3.3 3.1.1 AO2
08.4	Draw a tangent to the curve at 3 cm Calculate the gradient of the tangent, e.g., $\frac{1180}{0.068} = 1.7 \times 10^4 \text{V} \text{m}^{-1}$ $\pm 0.3 \times 10^4 \text{V} \text{m}^{-1}$	Allow 170 if units quoted as V cm ⁻¹	1 1 1	3.7.3.3 AO3
08.5	V at 6 cm = 300 V $\Delta W = Q\Delta V = 4 \times 10^{-9} \times 300 = 1.2 \times 10^{-6} \text{ J}$		1 1	3.7.3.3 AO2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Skills box answers

۲

Question	Answer
1	$F = \frac{1}{4\pi\epsilon_0} \frac{Q_d}{r^2}$ $Q = +25 \times 10^{-6} \text{ C}; q = +100 \times 10^{-6} \text{ C}$ $e_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}; r = 60 \times 10^{-3} \text{ m}$ $F = \frac{2.5 \times 10^{-5} (1.00 \times 10^{-4})}{(6.0 \times 10^{-2})^2}$ $F = 5.5 \times 10^4 \text{ N}$
2(a)	The force is attractive because the charges have opposite signs.
2(b)	$F = \frac{1}{4\pi \times 8.85 \times 10^{-12}} \frac{4.0 \times 10^{-9} \times (-8.0 \times 10^{-9})}{(80 \times 10^{-3})^2}$ F = 4.5 \times 10^{-5} N
3	$F \propto \frac{1}{r^2}$ so if the distance doubles, the force will decrease by $\frac{1}{(2)^2}$. The new force will be 10 N.

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

