A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Direction of arrow from centre of gold nucleus outwards	Judge by eye	1	$\begin{gathered} 3.7 .1 \\ \text { AO1 } \end{gathered}$
01.2	$\begin{aligned} & 6.2 \mathrm{MeV}=6.2 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \\ & E_{\mathrm{k}}=\frac{1}{2} m v^{2} \\ & v^{2}=\frac{2 \times E_{\mathrm{k}}}{m}=\frac{2 \times 6.2 \times 10^{6} \times 1.6 \times 10^{-19}}{6.64 \times 10^{-27} \mathrm{~kg}} \\ & v=1.73 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		1 1	$\begin{gathered} 3.1 .1 \\ 3.2 .1 .2 \\ \text { AO2 } \end{gathered}$
01.3	$\begin{aligned} & \Delta W=Q \Delta V \text { so EPE }=V \times Q \\ & \frac{1}{2} m v^{2}=\frac{Q q}{4 \pi \varepsilon_{0} r} \\ & \frac{1}{2} m v^{2}=\frac{Z e \times 2 e}{4 \pi \varepsilon_{0} r_{c}} \\ & r_{\mathrm{c}}=\frac{Z e^{2}}{\pi \varepsilon_{0} m v^{2}} \end{aligned}$	Must be clear how the 4 cancelled - watch for 2 disappearing	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .3 \\ \text { AO3 } \end{gathered}$
01.4	$\begin{aligned} & Z=79 \\ & r_{\mathrm{c}}=\frac{Z e^{2}}{\pi \varepsilon_{0} m v^{2}}=\frac{79 \times\left(1.6 \times 10^{-19}\right)^{2}}{\pi \times 8.85 \times 10^{-12} \times 6.64 \times 10^{-27} \times\left(1.73 \times 10^{7}\right)^{2}} \\ & r_{\mathrm{c}}=3.7 \times 10^{-14} \end{aligned}$	allow e.c.f. from 01.2 if $Z=197$ is used, deduct one mark (then r_{c} would $=9.13 \times 10^{-14}$)	1 1	$\begin{gathered} 3.7 .3 .3 \\ \text { AO2 } \end{gathered}$
02.1	Lines leaving spheres perpendicular to surface Arrows point away from positive Suitable pattern between repelling spheres		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .2 \\ \text { AO1 } \end{gathered}$

A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark
$\mathbf{0 2 . 2}$	One problem with One related solution e.g., difficulty of affecting the field using metal instruments Use wooden/plastic ruler Difficulty in measuring distances between curved objects Set up ruler with set squares fixed or use light and measure distance between shadows	PS1.1 ATc	
AO3			

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
03.4	\mathbf{P} is at a distance of 12.5 cm $\begin{aligned} & 300 \times 10=12.5 \times V \\ & V=240 \mathrm{~V} \end{aligned}$		1 1	$\begin{gathered} \text { 3.7.3.3 } \\ \text { AO2 } \end{gathered}$
04.1	At least 6 lines drawn - equidistant Arrows pointing down	ignore field outside/near edge of plates	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .2 \\ \text { AO1 } \end{gathered}$
04.2	Path deflected upwards	Ignore size of deflection	1	$\begin{gathered} 3.7 .3 .2 \\ \text { AO1 } \end{gathered}$
04.3	Use of $E=\frac{F}{Q}=\frac{V}{d}$ or $F=m a$ $\begin{aligned} & F=\frac{V Q}{d} \\ & m a=\frac{V Q}{d} \\ & a=\frac{V Q}{m d} \\ & a=\frac{1500 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31} \times 0.025}=1.1 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$		1 1 1	$\begin{gathered} 3.7 .3 .2 \\ 3.4 .1 .5 \\ \text { AO2 } \end{gathered}$
04.4	$\begin{aligned} & \text { Time between plates }=\frac{\text { length of plates }}{\text { speed of electrons }} \\ & t=\frac{0.04}{3 \times 10^{7}}=1.3 \times 10^{-9} \mathrm{~s} \end{aligned}$ Use of suvat for vertical displacement $\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \text { and } u=0 \\ & s=\frac{1}{2} \times 1.1 \times 10^{16} \times\left(1.3 \times 10^{-9}\right)^{2} \\ & s=0.01 \mathrm{~m}=10 \mathrm{~mm} \text { or } 0.0098 \mathrm{~m}=9.8 \mathrm{~mm} \end{aligned}$ Distance from top plate $=12.5 \mathrm{~mm}-10 \mathrm{~mm}=2.5 \mathrm{~mm}$ (or 2.7 mm)	Use of rounded numbers gives $s=8.5 \mathrm{~mm}$ and so final answer $=4 \mathrm{~mm}$	1 1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.4.1.4 } \\ \text { AO2 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
05.1	$\begin{aligned} & \text { Use of } C=\frac{Q}{V} \\ & V=\frac{Q}{4 \pi \varepsilon_{0} R} \\ & C=Q \times \frac{4 \pi \varepsilon_{0} R}{Q}=4 \pi \varepsilon_{0} R \end{aligned}$	Clear substitution seen for second mark	1 1	$\begin{gathered} 3.7 .4 .1 \\ 3.7 .3 .3 \\ \text { AO2 } \end{gathered}$
05.2	$\begin{aligned} & C=4 \pi \varepsilon_{0} R=4 \times \pi \times 8.85 \times 10^{-12} \times 0.20=2.2 \times 10^{-11} \\ & \mathrm{~F} \text { (Farads) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .4 .1 \\ \text { AO1 } \end{gathered}$
05.3	$\begin{aligned} & E=\frac{V}{r} \\ & V=E r=3 \times 10^{6} \times 0.20=6 \times 10^{5} \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .2 \\ \text { AO2 } \end{gathered}$
05.4	Use of $Q=V C=2.2 \times 10^{-11} \times 6 \times 10^{5}=1.3 \times 10^{-5} \mathrm{C}$ Number of excess charges $=\frac{1.3 \times 10^{-5} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}=8.3 \times 10^{13}$	Be aware of possible e.c.f. from answer to 05.2 and 05.3 Could also use $V=\frac{Q}{4 \pi \varepsilon_{0} R}$	1 1	$\begin{gathered} 3.7 .4 .1 \\ \text { AO2 } \end{gathered}$
06.1	$\begin{aligned} & F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}} \\ & F=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times\left(5.3 \times 10^{-11}\right)^{2}} \\ & F=8.2 \times 10^{-8} \mathrm{~N} \end{aligned}$		1 1	$\begin{gathered} 3.7 .3 .1 \\ \text { AO2 } \end{gathered}$
06.2	$8.2 \times 10^{-8} \mathrm{~N}$	e.c.f. same as 06.1 ignore minus sign	1	$\begin{gathered} \text { 3.7.3.1 } \\ \text { AO1 } \end{gathered}$
06.3	$\begin{aligned} & F=m a \\ & a=\frac{F}{m}=\frac{8.2 \times 10^{-8} \mathrm{~N}}{9.11 \times 10^{-31} \mathrm{~kg}}=9.0 \times 10^{22} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$		1	$\begin{gathered} \text { 3.4.1.5 } \\ \text { AO2 } \end{gathered}$

A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
06.4	Total energy, $E=E_{\mathrm{k}}+E_{\mathrm{p}}$ $\Delta W=Q \Delta V$ $E=\frac{1}{2} m v^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}$ since $\frac{m v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}}$ $m \nu^{2}=\frac{e^{2}}{4 \pi \varepsilon_{0} r}$ $E=\frac{e^{2}}{2 \times 4 \pi \varepsilon_{0} r}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}=-\frac{e^{2}}{8 \pi \varepsilon_{0} r}$ $E=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times 5.3 \times 10^{-11}}$ $E=2.2 \times 10^{-18} \mathrm{~J}$ $E=\frac{2.2 \times 10^{-18} \mathrm{~J}}{1.6 \times 10^{-19} \mathrm{~J}}=13.57 \mathrm{eV}$	Also credit for full marks use of $\frac{1}{2} m v^{2}$ and $V=\frac{Q}{4 \pi \varepsilon_{0} r}\left(E_{\mathrm{p}}=Q \frac{Q}{4 \pi \varepsilon_{0} r}\right)$	1 1 1 1	$\begin{gathered} 3.7 .3 .3 \\ 3.1 .1 \\ \text { AO3 } \end{gathered}$
07.1	Lines drawn at $\frac{1}{4}, \frac{1}{2}$, and $\frac{3}{4}$ points and correctly labelled		1	$\begin{gathered} \text { 3.7.3.3 } \\ \text { AO1 } \end{gathered}$
07.2	$\begin{aligned} & E=\frac{V}{d} \\ & =\frac{40}{0.01}=400 \mathrm{Vm}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.3.2 } \\ \text { AO1 } \end{gathered}$
07.3	$\begin{aligned} & \Delta W=Q \Delta V \\ & =1.6 \times 10^{-19} \times 40 \mathrm{~V}=6.4 \times 10^{-18} \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .3 \\ \text { AO2 } \end{gathered}$

A Level AQA Physics

15 Electric fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Max 3 from: Electron is attracted by $\mathrm{B} /$ repelled by $\mathrm{A} /$ experiences force to the right Electron decelerates (initially) Electron does not reach A/stops/reverses direction Stops at half way point $(20 \mathrm{eV})$ When it returns it has 20 eV		$\max 3$	$\begin{gathered} \text { 3.7.3.3 } \\ \text { AO3 } \end{gathered}$
08.1	Is the work done per unit positive charge when it is moved from infinity to that point	Must include positive	1	$\begin{gathered} \text { 3.7.3.3 } \\ \text { AO1 } \end{gathered}$
08.2	$\begin{aligned} & V \propto \frac{1}{r} \\ & V r=\text { constant } \end{aligned}$ Data checked at least three times and conclusion, $\begin{aligned} & \text { e.g. } 1800 \times 0.01=18 \\ & 600 \times 0.03=18 \\ & 300 \times 0.06=18 \end{aligned}$		1 1 1	$\begin{gathered} 3.7 .3 .3 \\ \text { AO2 } \end{gathered}$
08.3	$\begin{aligned} & V=\frac{Q}{4 \pi \varepsilon_{0} r} \\ & Q=V \times 4 \pi \varepsilon_{0} r=18 \times 4 \times \pi \times 8.85 \times 10^{-12} \\ & Q=2.0 \times 10^{-9} \mathrm{C} \\ & Q=2 \mathrm{nC} \end{aligned}$		1 1	$\begin{gathered} 3.7 .3 .3 \\ 3.1 .1 \\ \text { AO2 } \end{gathered}$
08.4	Draw a tangent to the curve at 3 cm Calculate the gradient of the tangent, e.g., $\frac{1180}{0.068}=1.7 \times 10^{4} \mathrm{Vm}^{-1}$ $\pm 0.3 \times 10^{4} \mathrm{Vm}^{-1}$	Allow 170 if units quoted as $\mathrm{V} \mathrm{cm}^{-1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .3 .3 \\ \text { AO3 } \end{gathered}$
08.5	$\begin{aligned} & V \text { at } 6 \mathrm{~cm}=300 \mathrm{~V} \\ & \Delta W=Q \Delta V=4 \times 10^{-9} \times 300=1.2 \times 10^{-6} \mathrm{~J} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.3.3 } \\ \text { AO2 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics

15 Electric fields - answers

Skills box answers

Question	Answer
$\mathbf{1}$	$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{d}}{r^{2}}$ $Q=+25 \times 10^{-6} \mathrm{C} ; q=+100 \times 10^{-6} \mathrm{C}$ $e_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} ; r=60 \times 10^{-3} \mathrm{~m}$ $F=\frac{2.5 \times 10^{-5}\left(1.00 \times 10^{-4}\right)}{\left(6.0 \times 10^{-2}\right)^{2}}$ $F=5.5 \times 10^{4} \mathrm{~N}$
2(a)	The force is attractive because the charges have opposite signs. $\mathbf{2 (b)}$ $F=\frac{1}{4 \pi \times 8.85 \times 10^{-12}} \frac{4.0 \times 10^{-9} \times\left(-8.0 \times 10^{-9}\right)}{\left(80 \times 10^{-3}\right)^{2}}$
$\mathbf{3}$	$F \propto \frac{1}{r^{2}}$ so if the distance doubles, the force will decrease by $\frac{1}{(2)^{2}}$. The new force will be 10 N.

