A Level AQA Physics
 14 Gravitational fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	g is the (gravitational) force per unit mass	Allow $\frac{F}{m}$ if F and m are explained.	1	$\begin{gathered} \text { 3.7.2.2 } \\ \text { AO1 } \end{gathered}$
01.2	$\begin{aligned} & \rho=\frac{M}{V}, V=\frac{4}{3} \pi r^{3} \\ & g=\frac{G M}{r^{2}}=\frac{G \rho \frac{4}{3} \pi r^{3}}{r^{2}}=G \rho \frac{4}{3} \pi r \end{aligned}$ If density constant, $g \propto r$ If g less, then r must be less		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .2 .2 \\ \text { AO2 } \end{gathered}$
01.3	Area under the existing curve shaded in from $2.4\left(\times 10^{6}\right)$ to the right/infinity		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .2 .3 \\ \text { AO1 } \end{gathered}$
01.4	Either by estimating area under curve: 220 squares ± 5 Each square $=0.1 \times 0.4 \times 10^{6} \mathrm{Jkg}^{-1}$ $\begin{aligned} & V_{\mathrm{g}}=220 \times 0.1 \times 0.4 \times 10^{6} \mathrm{Jkg}^{-1} \\ & =8.8 \times 10^{6} \mathrm{Jkg}^{-1} \end{aligned}$ OR Use of surface data to gain $G M$ $\begin{aligned} & g=\frac{G M}{r^{2}} \text { and } g r^{2}=G M \\ & V_{\mathrm{g}}=\frac{G M}{r}=\frac{g r^{2}}{r}=g r=3.7 \times 2.4 \times 10^{6}=8.9 \times 10^{6}\left(\mathrm{~J} \mathrm{~kg}^{-1}\right) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.7 .2 .3 \\ \text { AO2 } \end{gathered}$
01.5	$\begin{aligned} & \frac{G M m}{r}=\frac{1}{2} m v^{2} \\ & \frac{2 G M}{r}=v^{2} \\ & v^{2}=2 \times 9 \times 10^{6} \\ & v=4200 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	All values of V_{g} yield $4200 \mathrm{~m} \mathrm{~s}^{-1}$ to 2 s.f.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.4 } \\ \text { AO2 } \end{gathered}$
01.6	Straight line drawn from (0, 0) to (2.4, 3.7)		1	$\begin{gathered} 3.7 .2 .2 \\ \mathrm{AO1} \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics
 14 Gravitational fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
02.1	$\begin{aligned} & g=\frac{G M}{r^{2}}, V_{\mathrm{g}}=\frac{G M}{r} \\ & V_{\mathrm{g}}=\left(\frac{G M}{r^{2}}\right) V_{\mathrm{g}}=g R \end{aligned}$		1	$\begin{gathered} 3.7 .2 .2 \\ 3.7 .2 .3 \\ \text { AO1 } \end{gathered}$
02.2	$\begin{aligned} & \frac{G M m}{r}=\frac{1}{2} m v^{2} \\ & \frac{G M}{r}=\frac{1}{2} v^{2} \\ & g R=\frac{1}{2} v^{2} \\ & v=\sqrt{2 g R} \end{aligned}$	Algebra must be clear Alternative $m v_{g}=\frac{1}{2} m v^{2}$ $\therefore v=\sqrt{2 V_{\mathrm{g}}}=\sqrt{2 g R}$	1 1	$\begin{gathered} \text { 3.7.2.4 } \\ \text { AO2 } \end{gathered}$
02.3	$\begin{aligned} & v=\sqrt{2 g R} \\ & v=\sqrt{2 \times 9.81 \times 6.37 \times 10^{6}}=11000 \mathrm{~m} \mathrm{~s}^{-1}(11200) \end{aligned}$		1	$\begin{gathered} 3.7 .2 .4 \\ \text { AO1 } \end{gathered}$
02.4	$\begin{aligned} & \text { Mass of hydrogen }=\frac{0.002}{6.02 \times 10^{23}}=3.32 \times 10^{-27} \mathrm{~kg} \\ & \frac{1}{2} m\left(c_{\text {rms }}\right)^{2}=\frac{3}{2} k T \\ & \left(\frac{m}{3 k}\right)\left(c_{\text {rms }}\right)^{2}=T \\ & T=\frac{3.32 \times 10^{-27} \mathrm{~kg}}{3 \times 1.38 \times 10^{-23}} \times 11000^{2} \\ & T=9700 \mathrm{~K} \text { (using all unrounded numbers gives } 10000 \mathrm{~K} \text {) } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.6.2.3 } \\ \text { AO3 } \end{gathered}$
02.5	Value used in 02.4 uses the mean speed of the molecules At 650 K there will be a range of molecular speeds and some will have enough speed to escape the atmosphere		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.6.2.3 } \\ \text { AO3 } \end{gathered}$
03.1	Gravitational potential V_{g} at a point is defined as the work done/energy required to bring $1 \mathrm{~kg} /$ unit mass from infinity to that point in space		1	$\begin{gathered} 3.7 .2 .3 \\ \mathrm{AOO} \end{gathered}$

A Level AQA Physics
 14 Gravitational fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
03.2	If $V \propto \frac{1}{r}$ Then $V r$ should equal a constant Take pairs of data (at least 2) and see if this is correct	Allow plot of a graph of $V \mathrm{vs} \frac{1}{r}$ Should be a straight line through the origin	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.3 } \\ \text { MS0.3 } \\ \text { AO2 } \end{gathered}$
03.3	Tangent drawn at $14 \times 10^{6} \mathrm{~m}$ Gradient calculated, e.g., $\frac{58 \times 10^{6}}{27 \times 10^{6}}$ $g=2.1 \pm 0.2$	Allow for 1 mark value calculated using $g=\frac{G M}{r^{2}}$, which gives value of 2.0	1 1	$\begin{gathered} 3.7 .2 .3 \\ \mathrm{AOO} 2 \end{gathered}$
03.4	Graph rising as it moves towards the Moon and then decreasing closer to the Moon Starts at -63 and Earth's surface, ends at a value smaller at Moon's surface Does not go to zero		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.3 } \\ \text { AO3 } \end{gathered}$
04.1	The potential difference between the lines is constant but the distance is not		1	$\begin{gathered} \text { 3.7.2.3 } \\ \text { AO2 } \end{gathered}$
04.2	Lines drawn towards the centre of the Earth perpendicular to surface (by eye) and potential lines Arrow pointing to the centre	Should stop at the surface	1 1	$\begin{gathered} 3.7 .2 .2 \\ \text { AO1 } \end{gathered}$
04.3	$\begin{aligned} & V_{\mathrm{g}}=\frac{G M}{r} \\ & r=\frac{G M}{V_{\mathrm{g}}} \\ & r=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \mathrm{~kg}}{40 \times 10^{6}}=1 \times 10^{7} \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.3 } \\ \text { AO1 } \end{gathered}$
04.4	gravitation potential remains constant $/ \Delta V_{\mathrm{g}}=0$ Since $V_{\mathrm{g}}=\frac{G M}{r}$ and (the mass of the Earth is constant and) the height of orbit is constant ${ }^{r}$		1 1	$\begin{gathered} \text { 3.7.2.3 } \\ \text { AO1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Physics
 14 Gravitational fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
05.1	Arrow down labelled W / mg / weight Arrow along string labelled Tension (pointing away from bob) Arrow to the left labelled Force/gravitational force of attraction		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.4.1.5 } \\ \text { AO1 } \end{gathered}$
05.2	The force of attraction between two masses is proportional to the product of the masses and inversely proportional to the distance between them squared.	Allow equation but terms must be defined	1	$\begin{gathered} \text { 3.7.2.1 } \\ \text { AOO } \end{gathered}$
05.3	$T \cos \theta=\frac{G m M_{\mathrm{E}}}{R^{2}} \text { or } T \sin \theta=\frac{G M m}{d^{2}}$ Divide one equation by the other (or substitute for T) $\begin{aligned} & \frac{T \sin \theta}{T \cos \theta}=\frac{\frac{G M m}{d_{2}}}{\frac{G M M_{\mathrm{E}}}{R_{2}}} \\ & \tan \theta=\frac{M R^{2}}{M_{\mathrm{E}} d^{2}} \end{aligned}$	Allow force triangle from 05.2 and use of $\tan =\frac{\text { opp }}{\text { adj }}$	1 1 1	$\begin{gathered} 3.4 .1 .1 \\ \text { AO2 } \end{gathered}$
05.4	$\begin{aligned} \% \text { difference } & =\frac{\text { measured }- \text { actual }}{\text { actual }} \\ & =\frac{4560-5510}{5510} \times 100 \%=(-) 17 \% \end{aligned}$	ignore minus sign	1	$\begin{aligned} & 3.1 .2 \\ & \text { AO2 } \end{aligned}$

A Level AQA Physics

14 Gravitational fields - answers

AO

Question	Answers	Extra information			Mark	AO Spec reference
06.1	$\begin{aligned} & F=\frac{G M m}{r^{2}} \text { and } F=\frac{m v^{2}}{r} \text { or } g=\frac{G M}{r^{2}} \text { and } a=\frac{v^{2}}{r} \\ & \frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \\ & \frac{G M}{r}=v^{2} \\ & v=\frac{2 \pi r}{T} \\ & \frac{G M}{r}=\frac{4 \pi^{2} r^{2}}{T^{2}} \\ & T^{2}=\frac{4 \pi^{2} r^{3}}{G M} \end{aligned}$ Since others constant $T^{2} \propto r^{3}$				1 1 1	$\begin{gathered} 3.7 .2 .4 \\ 3.6 .1 .1 \\ \text { AO1 } \end{gathered}$
06.2	Appropriate test proposed $\frac{T^{2}}{r^{3}}=$ constant Data tested at least three times Relationship holds for the moons	Moon	$\begin{aligned} & \frac{T^{2}}{r^{3}} / \\ & \times \mathbf{1 0}^{-8} \\ & \mathbf{d a y s}^{2} \\ & \mathbf{M m}^{-3} \end{aligned}$	$\begin{aligned} & \frac{r^{3}}{T^{2}} / \\ & \times 10^{6} \\ & \mathrm{Mm}^{3} \\ & \text { days }^{-2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.4 } \\ \text { AO2 } \end{gathered}$
		Io	4.164	24.02		
		Europa	4.174	23.96		
		Ganymede	4.179	23.93		
		Callisto	4.172	23.97		

A Level AQA Physics
 14 Gravitational fields - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
06.3	$\frac{T^{2}}{r^{3}}=\frac{4 \pi^{2}}{G M}$ use of constant in appropriate units or pair of data from the table $\begin{aligned} & \frac{T^{2}}{r^{3}}=3.1 \times 10^{-16} \mathrm{~s}^{2} \mathrm{~m}^{-3} \\ & M=\frac{4 \pi^{2}}{G \times 3.1 \times 10^{-16}}=1.9 \times 10^{27} \mathrm{~kg} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.7.2.4 } \\ \text { AO3 } \end{gathered}$
06.4	$\begin{aligned} & T^{2} \propto r^{3} \\ & 2 \log T \propto 3 \log r \\ & \log t \propto \frac{3}{2} \log r \\ & \text { Straight-line graph with gradient }=\frac{3}{2} \end{aligned}$		1 1	$\begin{gathered} 3.7 .2 .4 \\ \text { MS3.11 } \\ \text { AO3 } \end{gathered}$
07.1	Arrow pointing towards centre of Earth (judged by eye)		1	$\begin{gathered} 3.7 .2 .1 \\ \text { AOO1 } \end{gathered}$
07.2	To remain in orbit, there must be a force perpendicular to direction of motion This satellite could not maintain this orbit without an engine/other force/ energy input	owtte	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.6.1.1 } \\ \text { AO1 } \end{gathered}$
07.3	$\begin{aligned} & \text { Use of } r=\left(36 \times 10^{6}+6.37 \times 10^{6}\right) \\ & T=24 \times 60 \times 60=86400 \mathrm{~s} \\ & \text { use of } v=\frac{2 \pi r}{T}=3081 \mathrm{~m} \mathrm{~s}^{-1} \approx 3 \mathrm{~km} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \\ & \frac{G M}{r}=v^{2} \\ & v=\sqrt{\frac{G M}{r}} \\ & v=\sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{36 \times 10^{6}+6.37 \times 10^{6}}} \\ & v=3100 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.6 .1 .1 \\ 3.7 .2 .1 \\ \text { AO2 } \end{gathered}$

A Level AQA Physics
 14 Gravitational fields - answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	$\begin{aligned} & \text { Use of } E=E_{k}+E_{\mathrm{p}} \\ & E_{k}=\frac{1}{2} m v^{2}=\frac{G M m}{2 r} \\ & E_{\mathrm{p}}=-\frac{G M m}{r} \\ & E=\frac{G M m}{2 r}-\frac{G M m}{r}=-\frac{G M m}{2 r} \\ & E=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 282}{2 \times\left(36 \times 10^{6}+6.37 \times 10^{6}\right)}=\frac{G M m}{2 r} \\ & E=-1.3 \times 10^{9} \mathrm{~J} \end{aligned}$	Students may also have used $\frac{1}{2} m v^{2}$ to yield same answer Do not award final mark if minus sign not included	1 1 1	$\begin{gathered} \text { 3.7.2.4 } \\ \text { AO2 } \end{gathered}$
08.1	Arrow drawn pointing to centre of the space station		1	$\begin{gathered} \text { 3.6.1.1 } \\ \text { AO1 } \end{gathered}$
08.2	$\begin{aligned} & a=\omega^{2} r \\ & \frac{9.81}{25}=\omega^{2} \\ & \omega=0.63 \mathrm{rad} \mathrm{~s}^{-1} \\ & \omega=\frac{2 \pi}{T} \\ & T=\frac{2 \pi}{\omega}=10 \mathrm{~s} \end{aligned}$		1 1	$\begin{gathered} 3.6 .1 .1 \\ 3.7 .2 .2 \\ \text { AO2 } \end{gathered}$
08.3	Suggested height: 1.8 m (allow between 1.5 m and 2.0 m) $\begin{aligned} & r=25-1.8=23.2 \mathrm{~m} \\ & a=\omega^{2} r \\ & a=0.63^{2} \times 23.2=9.2 \mathrm{~ms} \mathrm{~s}^{-2} \end{aligned}$		1 1	$\begin{aligned} & 3.1 .3 \\ & 3.6 .1 .1 \\ & \text { AO3 } \end{aligned}$
08.4	Larger radius means the height of astronaut is a smaller fraction of the radius - so difference over body marginal (or wtte) Difficulty/expense of taking such large amounts of material into space		1 1	$\begin{aligned} & 3.1 .2 \\ & \text { AO3 } \end{aligned}$

A Level AQA Physics
 14 Gravitational fields - answers

Skills box answers

Question	Answer
$\mathbf{1}$	Plot a graph of $\ln (T /$ days $)$ against $\ln \left(r / 10^{3} \mathrm{~km}\right)$. Obtain a straight-line graph of gradient 1.5 and intercept -7.9.
$\mathbf{2}$	$T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$ Substituting in values for G, M and r gives $T^{2}=\frac{4 \pi^{2}\left(3.5 \times 10^{8}\right)^{3}}{6.67 \times 10^{-11} \times 1.02 \times 10^{26}}$ $T^{2}=2.49 \times 10^{11} \mathrm{~s}^{2}$. Therefore $T=\sqrt{\left(2.49 \times 10^{11} \mathrm{~s}^{2}\right)}=4.99 \times 10^{5} \mathrm{~s}$ or 5.77 days.
$\mathbf{3}$	Rearranging the equation for M gives $M=\frac{4 \pi^{2} r^{3}}{G T^{2}}$. Converting the values of r and T into standard form: $r=2.38 \times 10^{8} \mathrm{~m}$ and $T=(1.37 \times 24 \times 60 \times 60)=1.18 \times 10^{5} \mathrm{~s}$. Substituting these into the rearranged equation gives $M=\frac{4 \pi^{2}\left(2.38 \times 10^{8}\right)^{3}}{6.67 \times 10^{-11}\left(1.18 \times 10^{5}\right)^{2}}=5.7 \times 10^{26} \mathrm{~kg}$

