

Question	Answers	Extra information	Mark	AO Spec reference
01.1	g is the (gravitational) force per unit mass	Allow $\frac{F}{m}$ if F and m are explained.	1	3.7.2.2 AO1
01.2	$\rho = \frac{M}{V}, V = \frac{4}{3}\pi r^{3}$ $g = \frac{GM}{r^{2}} = \frac{G\rho \frac{4}{3}\pi r^{3}}{r^{2}} = G\rho \frac{4}{3}\pi r$ If density constant, $g \propto r$ If g less, then r must be less		1 1 1	3.7.2.2 AO2
01.3	Area under the existing curve shaded in from 2.4 ($ imes 10^6$) to the right/infinity		1 1	3.7.2.3 AO1
01.4	Either by estimating area under curve: 220 squares ±5 Each square = $0.1 \times 0.4 \times 10^6 \text{ J kg}^{-1}$ $V_g = 220 \times 0.1 \times 0.4 \times 10^6 \text{ J kg}^{-1}$ = $8.8 \times 10^6 \text{ J kg}^{-1}$ OR Use of surface data to gain GM $g = \frac{GM}{r^2}$ and $gr^2 = GM$ $V_g = \frac{GM}{r} = \frac{gr^2}{r} = gr = 3.7 \times 2.4 \times 10^6 = 8.9 \times 10^6 (\text{ J kg}^{-1})$		1 1	3.7.2.3 AO2
01.5	$\frac{GMm}{r} = \frac{1}{2}mv^2$ $\frac{2GM}{r} = v^2$ $v^2 = 2 \times 9 \times 10^6$ $v = 4200 \text{ m s}^{-1}$	All values of $V_{\rm g}$ yield 4200 m s ⁻¹ to 2 s.f.	1 1	3.7.2.4 AO2
01.6	Straight line drawn from (0, 0) to (2.4, 3.7)		1	3.7.2.2 AO1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.1	$g = \frac{GM}{r^2}, V_g = \frac{GM}{r}$ $V_g = \left(\frac{GM}{r^2}\right) V_g = gR$		1	3.7.2.2 3.7.2.3 AO1
02.2	$\frac{GMm}{r} = \frac{1}{2}mv^2$ $\frac{GM}{r} = \frac{1}{2}v^2$ $gR = \frac{1}{2}v^2$ $v = \sqrt{2gR}$	Algebra must be clear Alternative $mv_g = \frac{1}{2}mv^2$ $\therefore v = \sqrt{2V_g} = \sqrt{2gR}$	1	3.7.2.4 AO2
02.3	$v = \sqrt{2gR}$ $v = \sqrt{2 \times 9.81 \times 6.37 \times 10^6} = 11000\mathrm{ms^{-1}}(11200)$		1	3.7.2.4 AO1
02.4	Mass of hydrogen = $\frac{0.002}{6.02 \times 10^{23}}$ = 3.32×10^{-27} kg $\frac{1}{2}m(c_{rms})^2 = \frac{3}{2}kT$ $\left(\frac{m}{3k}\right)(c_{rms})^2 = T$ $T = \frac{3.32 \times 10^{-27}$ kg $3 \times 1.38 \times 10^{-23} \times 11000^2$ T = 9700 K (using all unrounded numbers gives 10000 K)		1 1 1	3.6.2.3 AO3
02.5	Value used in 02.4 uses the mean speed of the molecules At 650 K there will be a range of molecular speeds and some will have enough speed to escape the atmosphere		1 1	3.6.2.3 AO3
03.1	Gravitational potential $V_{\rm g}$ at a point is defined as the work done/energy <u>required</u> to bring <u>1 kg/unit</u> mass from infinity to that point in space		1	3.7.2.3 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.2	If $V \propto \frac{1}{r}$ Then Vr should equal a constant Take pairs of data (at least 2) and see if this is correct	Allow plot of a graph of V vs $\frac{1}{r}$ Should be a straight line through the origin	1 1	3.7.2.3 MS0.3 AO2
03.3	Tangent drawn at 14×10^{6} m Gradient calculated, e.g., $\frac{58 \times 10^{6}}{27 \times 10^{6}}$ $g = 2.1 \pm 0.2$	Allow for 1 mark value calculated using $g = \frac{GM}{r^2}$, which gives value of 2.0	1 1	3.7.2.3 AO2
03.4	Graph rising as it moves towards the Moon and then decreasing closer to the Moon Starts at –63 and Earth's surface , ends at a value smaller at Moon's surface Does not go to zero		1 1 1	3.7.2.3 AO3
04.1	The potential difference between the lines is constant but the distance is not		1	3.7.2.3 AO2
04.2	Lines drawn towards the centre of the Earth perpendicular to surface (by eye) and potential lines Arrow pointing to the centre	Should stop at the surface	1 1	3.7.2.2 AO1
04.3	$V_{g} = \frac{GM}{r}$ $r = \frac{GM}{V_{g}}$ $r = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \text{ kg}}{40 \times 10^{6}} = 1 \times 10^{7} \text{ m}$		1	3.7.2.3 AO1
04.4	gravitation potential remains constant / $\Delta V_g = 0$ Since $V_g = \frac{GM}{r}$ and (the mass of the Earth is constant and) the height of orbit is constant		1 1	3.7.2.3 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.1	Arrow down labelled <i>W / mg /</i> weight Arrow along string labelled Tension (pointing away from bob) Arrow to the left labelled Force/gravitational force of attraction		1 1 1	3.4.1.5 AO1
05.2	The force of attraction between two masses is proportional to the product of the masses and inversely proportional to the distance between them squared.	Allow equation but terms must be defined	1	3.7.2.1 AO1
05.3	$T\cos\theta = \frac{GmM_{\rm E}}{R^2} \text{ or } T\sin\theta = \frac{GMm}{d^2}$ Divide one equation by the other (or substitute for <i>T</i>) $\frac{T\sin\theta}{T\cos\theta} = \frac{\frac{GMm}{d_2}}{\frac{GmM_{\rm E}}{R_2}}$ $\tan\theta = \frac{MR^2}{M_{\rm E}d^2}$	Allow force triangle from 05.2 and use of tan = $\frac{\text{opp}}{\text{adj}}$	1 1 1	3.4.1.1 AO2
05.4	% difference = $\frac{\text{measured - actual}}{\substack{\text{actual} \\ = \frac{4560 - 5510}{5510} \times 100\%} = (-)17\%$	ignore minus sign	1	3.1.2 AO2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information			Mark	AO Spec reference
06.1	$F = \frac{GMm}{r^2} \text{ and } F = \frac{mv^2}{r} \text{or} g = \frac{GM}{r^2} \text{ and } a = \frac{v^2}{r}$ $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $\frac{GM}{r} = v^2$ $v = \frac{2\pi r}{T}$ $\frac{GM}{r} = \frac{4\pi^2 r^2}{T^2}$ $T^2 = \frac{4\pi^2 r^3}{GM}$ Since others constant $T^2 \propto r^3$				1	3.7.2.4 3.6.1.1 AO1
06.2	Appropriate test proposed $\frac{T^2}{r^3}$ = constant Data tested at least three times Relationship holds for the moons	Moon	$\frac{T^2}{r^3} / \times 10^{-8}$ days ² Mm ⁻³	$\frac{r^3}{T^2}/$ × 10 ⁶ Mm ³ days ⁻²	1 1 1	3.7.2.4 AO2
		lo	4.164	24.02		
		Europa	4.174	23.96		
		Ganymede	4.179	23.93		
		Callisto	4.172	23.97		

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.3	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$ use of constant in appropriate units or pair of data from the table		1	3.7.2.4 AO3
	$\frac{T^2}{r^3} = 3.1 \times 10^{-16} \mathrm{s}^2 \mathrm{m}^{-3}$		1	
	$M = \frac{4\pi^2}{G \times 3.1 \times 10^{-16}} = 1.9 \times 10^{27} \text{kg}$			
06.4	$T^{2} \propto r^{3}$ $2 \log T \propto 3 \log r$ $\log t \propto \frac{3}{2} \log r$		1	3.7.2.4 MS3.11 AO3
	Straight-line graph with gradient = $\frac{3}{2}$		1	103
07.1	Arrow pointing towards centre of Earth (judged by eye)		1	3.7.2.1 AO1
07.2	To remain in orbit, there must be a force perpendicular to direction of motion This satellite could not maintain this orbit without an engine/other force/ energy input	owtte	1 1	3.6.1.1 AO1
07.3	Use of $r = (36 \times 10^6 + 6.37 \times 10^6)$ $T = 24 \times 60 \times 60 = 86400 \text{ s}$ use of $v = \frac{2\pi r}{T} = 3081 \text{ m s}^{-1} \approx 3 \text{ km s}^{-1}$	$\frac{GMm}{r^2} = \frac{mv^2}{r}$ $\frac{GM}{r} = v^2$ $v = \sqrt{\frac{GM}{r}}$	1	3.6.1.1 3.7.2.1 AO2
		$v = \sqrt{\frac{r}{\sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{36 \times 10^{6} + 6.37 \times 10^{6}}}}$ v = 3100 m s ⁻¹	1 1	

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Use of $E = E_k + E_p$ $E_k = \frac{1}{2}mv^2 = \frac{GMm}{2r}$ $E_p = -\frac{GMm}{r}$ $E = \frac{GMm}{2r} - \frac{GMm}{r} = -\frac{GMm}{2r}$ $E = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 282}{2 \times (36 \times 10^6 + 6.37 \times 10^6)} = \frac{GMm}{2r}$ $E = -1.3 \times 10^9 \text{ J}$	Students may also have used $\frac{1}{2}mv^2$ to yield same answer Do not award final mark if minus sign not included	1 1 1	3.7.2.4 AO2
08.1	Arrow drawn pointing to centre of the space station		1	3.6.1.1 AO1
08.2	$a = \omega^2 r$ $\frac{9.81}{25} = \omega^2$ $\omega = 0.63 \text{ rad s}^{-1}$ $\omega = \frac{2\pi}{T}$ $T = \frac{2\pi}{T} = 10 \text{ s}$		1	3.6.1.1 3.7.2.2 AO2
08.3	ω Suggested height: 1.8 m (allow between 1.5 m and 2.0 m) r = 25 - 1.8 = 23.2 m $a = ω^2 r$ $a = 0.63^2 × 23.2 = 9.2$ m s ⁻²		1	3.1.3 3.6.1.1 AO3
08.4	Larger radius means the height of astronaut is a smaller fraction of the radius – so difference over body marginal (or wtte) Difficulty/expense of taking such large amounts of material into space		1 1	3.1.2 AO3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Skills box answers

۲

Question	Answer
1	Plot a graph of $\ln(T / \text{days})$ against $\ln(r / 10^3 \text{ km})$. Obtain a straight-line graph of gradient 1.5 and intercept –7.9.
2	$T^{2} = \frac{4\pi^{2}}{GM}r^{3}$ Substituting in values for <i>G</i> , <i>M</i> and <i>r</i> gives $T^{2} = \frac{4\pi^{2} (3.5 \times 10^{8})^{3}}{6.67 \times 10^{-11} \times 1.02 \times 10^{26}}$ $T^{2} = 2.49 \times 10^{11} \text{ s}^{2}. \text{ Therefore } T = \sqrt{(2.49 \times 10^{11} \text{ s}^{2})} = 4.99 \times 10^{5} \text{ s or } 5.77 \text{ days.}$
3	Rearranging the equation for M gives $M = \frac{4\pi^2 r^3}{GT^2}$. Converting the values of r and T into standard form: $r = 2.38 \times 10^8$ m and $T = (1.37 \times 24 \times 60 \times 60) = 1.18 \times 10^5$ s. Substituting these into the rearranged equation gives $M = \frac{4\pi^2 (2.38 \times 10^8)^3}{6.67 \times 10^{-11} (1.18 \times 10^5)^2} = 5.7 \times 10^{26}$ kg

۲

