

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	Period = $\frac{4.8 \text{ s}}{3}$ = 1.6 s	Evidence of use of graph to find <i>T</i> Frequency	1	2	3.6.1.1
	$f = \frac{1}{T} = \frac{1}{1.6 \text{ s}} = 0.625 = 0.63 \text{ Hz}$		1		
01.2	Maximum velocity = $\omega A = 2\pi f A$	Evidence of use of frequency	1	1	3.6.1.2
	= 2 × 3.14 × 0.63 × 0.02 = 0.0785 m s ⁻¹ = 0.079 m s ⁻¹ = (7.9 × 10 ⁻² m s ⁻¹)		1	2	
01.3	Find the maximum gradient		1	1	3.4.1.3
01.4	Sinusoidal/same number of waves/frequency/periodic time		1	2	3.6.1.2
	Inverted/a negative cosine graph Maximum acceleration = $\omega^2 A = (2\pi f)^2 A = 0.308 \text{ m s}^{-2} = 0.31 \text{ m s}^{-2}$		1 1		
01.5	Condition for simple harmonic motion is that $a \propto -x$ So the graph of <i>a</i> is the same shape as that of <i>x</i> , but inverted		1	1	3.6.1.2
02.1	Strategy: States that readings of <i>T</i> (as the dependent variable) will be measured for different values of independent variable, <i>wire diameter</i> , <i>d</i> .	Identifies dependent, independent and 2 control variables	1	1	WS
	Clearly identifies at least 2 correct control variables: length/number of coils on spring/ mass	Change <i>d</i> , measure <i>T</i>	1		
	Make springs using wire of different diameters and measure the time period Repeat measurements, omit outliers, find mean	Repeat, take mean How to deal with outliers	1 1		
	· · · · · · · · · · · · · · · · · · ·	now to deal with outliers		2	
02.2	Measure the time for 10 oscillations and divide the time by 10		1	2	WS
02.3	Plausible reason, e.g. the length of wire is the same so the volume/mass of the wire will vary with the area of the wire, which is proportional to d^2		1	3	3.4.2.1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
02.4	Use the time period and mass to find k $T = 2\pi \sqrt{\frac{m}{k}}$	Evidence of use of equation to find <i>k</i>	1	3	3.6.1.3
	$k = \left(\frac{2\pi}{T}\right)^2 m$ Plot a graph of k (y-axis) against d^2 (x-axis), and if it is a straight line then the hypothesis is correct	Correct axes identified	1		
03.1	$T = 2\pi \sqrt{\frac{m}{k}}$ Plot a graph of T against $\sqrt{\frac{1}{k}}$: the gradient = $2\pi \sqrt{m}$ Or Plot T^2 against $\frac{1}{k}$: the gradient = $4\pi^2 m$	Correctly identifies variables to plot, and how gradient relates to mass	1	1	3.6.1.3
	Collect values of time period and spring constant Change <i>k</i> , measure time period, use at least 6 different springs Displace the trolley and measure the time for many oscillations with a stop clock, e.g. 5, and divide by 5 to find each time period Repeat measurements and find the average time period for each value of <i>k</i>	Indication of range of independent variable Accurate measurement of time Repeat measurements	1 1 1		
03.2	Use the full reading on the stopwatch (to hundredths of a second) in measurements and calculation of the mean Round up to one decimal place, and use uncertainty in using the stopwatch $= \pm 0.2$ s due to reaction time for both starting and stopping the stopwatch Giving a total uncertainty of ± 0.4 s	Use of full display on stopwatch until the calculation of final value Estimation of reaction time Total uncertainty is double the reaction time	1 1 1	1	WS
03.3	Suitable method: Set up the light gate so that it is horizontal and triggered by the mass when it goes through its equilibrium position Attach a straw/light rod to the mass that breaks the beam as the mass goes through its equilibrium position The measurement of <i>T</i> will be double the time measured by the light gate	Suitable practical arrangement Measurement of <i>T</i> that is accurate for the arrangement	1 1	1	3.6.1.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

Question	Answers	Extra information	Mark	AO	Spec reference
03.4	Each spring produces a restoring force of $-kx$, so the total restoring force $= -2kx$	Analysis to produce double the restoring force	1	2	3.6.1.2
	ma = -2kx compared to $ma = -kxso \omega^2 = \frac{2k}{m}, \omega increases by \sqrt{2}$	Use of $a = \omega^2 x$	1		
	$T = \frac{2\pi}{\omega}$ so T is reduced by $\frac{1}{\sqrt{2}}$	Answer	1		
04.1	For each length: Allow the pendulum to swing 3 times (or more) Take the times recorded by the light gate and double them to find the time period		1 1	1	3.6.1.3
	Find the mean of all of the measurements		1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

Question	Answers	Extra information	Mark	AO	Spec reference
Question 04.2	x-axis length, y-axis T ² Line of best fit through (0, 0)	Extra information Both labels needed	Mark 1	AO 2	Spec reference 3.6.1.3
	Line of best fit ignoring anomalous result, with gradient of $\frac{4.0 \text{ s}^2}{1 \text{ m}}$	Allow 3.9-4.1	1		
	$T = 2\pi \sqrt{\frac{l}{g}}$ $T^{2} = 4\pi^{2} \frac{l}{g}$ so graph of T^{2} versus l has a gradient of $\frac{4\pi^{2}}{g}$	Evident of manipulation of equation	1		
	$g = \frac{4\pi^2}{\text{gradient}} = \frac{4\pi^2}{4.0} = 9.9 \ (9.87) \text{m}\text{s}^{-2}$	Allow 9.62–10.1	1		

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Answers	Extra information	Mark	AO	Spec reference
Bigger – small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be	Do not allow effect on <i>g</i> without explanation	1	1	3.6.1.3
Smaller – amplitude does not affect time period, g not affected		1		
Systematic error in measurement of length		1	2	3.4.2.2
The angle through which the pendulum is displaced should be small so that you can use the small angle approximation		1	1	3.6.1.3
So that $T = 2\pi \sqrt{\frac{l}{g}}$ pendulum equation, which is independent of mass		1		
$x = A \cos \omega t$	Calculation of angular velocity		2	3.6.1.2
$A = 3.2 \times 10^{-2} \text{ m}, \omega = \frac{2\pi}{T} = \frac{2\pi}{1.4} = 4.5 \text{ rad s}^{-1}$	Equation	1		
$x = 3.2 \times 10^{-2} \cos(4.5t)$		1		
Maximum velocity = ωA = 4.5 \times 0.032 = 0.14 m s ⁻¹			2	3.6.1.2
Maximum kinetic energy = $\frac{1}{2}mv^2 = \frac{1}{2} \times 0.26 \times (0.14)^2 = 2.7 \times 10^{-3} \text{ J}$		1		
Graph that is correct shape $(y = 1 - x^2)$				
Maximum labelled, x-axis from -3.2 cm to $+3.2$ cm		1		
total energy				
E_k +32				
	Bigger – small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be Smaller – amplitude does not affect time period, g not affected Systematic error in measurement of length The angle through which the pendulum is displaced should be small so that you can use the small angle approximation So that $T = 2\pi \sqrt{\frac{I}{g}}$ pendulum equation, which is independent of mass $x = A \cos \omega t$ $A = 3.2 \times 10^{-2} \text{ m}, \omega = \frac{2\pi}{T} = \frac{2\pi}{1.4} = 4.5 \text{ rad s}^{-1}$ $x = 3.2 \times 10^{-2} \text{ cos}(4.5t)$ Maximum velocity = $\omega A = 4.5 \times 0.032 = 0.14 \text{ m s}^{-1}$ Maximum kinetic energy = $\frac{1}{2}mv^2 = \frac{1}{2} \times 0.26 \times (0.14)^2 = 2.7 \times 10^{-3} \text{ J}$ Graph that is correct shape $(y = 1 - x^2)$ Maximum labelled, x-axis from -3.2 cm to +3.2 cm	Bigger - small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be Smaller - amplitude does not affect time period, g not affectedDo not allow effect on g without explanationSystematic error in measurement of lengthImage: comparison of the pendulum is displaced should be small so that you can use the small angle approximation So that $T = 2\pi \sqrt{\frac{1}{g}}$ pendulum equation, which is independent of massCalculation of angular velocity Equation $x = A \cos \omega t$ $x = 3.2 \times 10^{-2} \operatorname{cos}(4.5t)$ Calculation of angular velocity $1.4 = 3.2 \times 10^{-2} \cos(4.5t)$ Calculation of maximum kinetic energy $= \frac{1}{2}mv^2 = \frac{1}{2} \times 0.26 \times (0.14)^2 = 2.7 \times 10^{-3} \operatorname{J}$ Graph that is correct shape $(y = 1 - x^2)$ Maximum labelled, x-axis from -3.2 cm to +3.2 cmCalculation of maximum kinetic energy	Bigger - small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be Smaller - amplitude does not affect time period, 	Bigger - small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be Smaller - amplitude does not affect time period, g not affectedDo not allow effect on g without explanation11Systematic error in measurement of length12The angle through which the pendulum is displaced should be small so that you can use the small angle approximation So that $T = 2\pi \sqrt{\frac{1}{g}}$ pendulum equation, which is independent of mass111 $x = A \cos \omega t$ $x = 3.2 \times 10^{-2} m, \omega = \frac{2\pi}{T} = \frac{2\pi}{1.4} = 4.5 \text{rad s}^{-1}$ $x = 3.2 \times 10^{-2} \cos(4.5t)$ Calculation of angular velocity Equation2Maximum velocity $= \omega A = 4.5 \times 0.032 = 0.14 \text{m s}^{-1}$ Maximum kinetic energy $= \frac{1}{2}mv^2 = \frac{1}{2} \times 0.26 \times (0.14)^2 = 2.7 \times 10^{-3} \text{J}$ Graph that is correct shape $(y = 1 - x^2)$ Maximum labelled, x-axis from $-3.2 \text{cm to } +3.2 \text{cm}$ Calculation of maximum kinetic energy1 $energy$ $energy$ 12

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
05.4	Assuming the total energy is constant, the potential energy versus time graph is x^2 graph So that the kinetic energy + potential energy at any position = total energy Or Total energy = $\frac{1}{2}kA^2$	Assumption description	1 1	1	3.6.1.3
	So potential energy = total energy – kinetic energy = $\frac{1}{2}kA^2 - \frac{1}{2}mv^2$				
05.5	The mass decreases, so kinetic energy decreases The line will not be symmetrical/the line will reach a lower value		1	2	3.6.1.3
06.1	Bathroom scales are compressed when you stand on them by an amount that is proportional to your weight/mass In the International Space Station, both the scales and the astronaut are in free fall so the scales will not be compressed / gravitational field strength is lower		1	2	3.4.1.1
06.2	$T = 2\pi \sqrt{\frac{m}{k}}$ $k = m \left(\frac{2\pi}{T}\right)^2$ $= 68.62 \text{ kg} \times \left(\frac{2\pi}{2.084}\right)^2$ $= 623.8 \text{ N m}^{-1}$		1	2	3.6.1.3
06.3	$0.9 \times 68.62 \text{ kg} = 61.76 \text{ kg}$ $T = 2\pi \sqrt{\frac{61.76 \text{ kg}}{623.8 \text{ Nm}^{-1}}}$ $= 1.977 \text{ s}$ (<i>T</i> is proportional to \sqrt{m} so as mass decreases so does periodic time)		1 1 1	2	3.6.1.3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
06.4	Max displacement = amplitude, which is proportion to energy Energy transferred to thermal store due to friction		1 1	3	3.6.1.3
06.5	No The mass depends on the time period, which is independent of amplitude		1 1	1	3.6.1.3
07.1	Volume of water displaced = $A \times x = 0.75 \text{ cm}^2 \times 1.0 \text{ cm} = 0.75 \text{ cm}^3$ Mass of water = density of water × volume = $0.75 \text{ cm}^3 \times 1 \text{ g cm}^{-3}$ = $0.75 \text{ g} = 7.5 \times 10^{-4} \text{ kg}$ Weight = $mg = 7.5 \times 10^{-4} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 7.357 \times 10^{-3} \text{ N}$	Correct use of equations for density and weight	2	2	3.4.2.1
07.2	The restoring force is proportional to the distance that the tube is displaced from its equilibrium position OR $F = -Ag\rho x$	Explanation of $F \propto x$	1	3	3.6.1.2
07.3	Acceleration = $\frac{F}{m} = \frac{7.4 \times 10^{-3} \text{ N}}{12 \times 10^{-3} \text{ kg}}$ $a_{\max} = 0.61 \text{ m s}^{-2}$ $a_{\max} = \omega^2 A = (2\pi f)^2 A$ $f = \sqrt{\frac{a_{\max}}{A(2\pi)^2}}$ $f = \sqrt{\frac{0.61 \text{ m s}^{-1}}{0.01 \text{ m}(2\pi)^2}}$	Calculation of acceleration Use of $a_{max} = \omega^2 A$ Alternatively, use $a_{max} = \omega^2 A$ to find ω , then use $T = \frac{2\pi}{\omega}$	1	3	3.6.1.2
	f = 1.2(4) Hz $T = \frac{1}{f} = \frac{1}{1.24 \text{ Hz}} = 0.80 \text{ s}$	Answer	1		

۲

۲

۲

Question	Answers	Extra information	Mark	AO	Spec reference
07.4	Restoring force $F = -Ag\rho x$	Derivation of value of ω^2	1	3	3.4.2.1
	$a = -\frac{\operatorname{area} \times g \times \operatorname{density}}{\operatorname{mass of tube}} \times x$ $\omega^2 = \frac{\operatorname{area} \times g \times \operatorname{density}}{\operatorname{mass of tube}} = (2\pi f)^2 = \frac{2\pi^2}{T^2}$ density $\propto \frac{1}{T^2}$ A plot of density versus $\frac{1}{(\operatorname{period})^2}$ is a straight line	Manipulation to show time period Answer	1		
07.5	A series circuit with an LDR and a fixed resistor A cell/battery and a voltmeter across either the LDR or resistor		1 1	1	3.5.1.5
08.1	$k = \frac{F}{x} = \frac{700 \text{ N}}{3.0 \times 10^{-2} \text{ mm}} = 23000 \text{ N m}^{-1}$		1	2	3.4.2.1
08.2	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{23000}{1200}} = 0.70 \text{Hz}$ $T = \frac{1}{f} = \frac{1}{0.70} = 1.4(2) \text{s}$		1 1	2	3.6.1.3
08.3	If the car goes over a bump/speed bump, it will displace the car from its equilibrium position		1	3	3.6.1.2
08.4	$T = 2\pi \sqrt{\frac{m}{k}}$ Either: plot T^2 versus m , gradient = $\frac{4\pi^2}{k}$ Or: plot T versus \sqrt{m} , gradient = $2\pi \sqrt{\frac{1}{k}}$	Appropriate plot Gradient that matches plot	1 1	1	3.6.1.3
08.5	The oscillations are heavily/critically damped		1	2	3.6.1.4

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Skills box answers

۲

Question	Answer	
1	Use a fiducial marker (such as a pin) stuck at the equilibrium point of the mass.	
	Reduce parallax by observing oscillation at the same level as the fiducial marker/mass.	
	Use small displacements of the mass so that the mass hanger doesn't 'jump' at the minimum displacement of the oscillation.	
	Include a measurement of reaction time in the measured time period.	

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲