A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	$\begin{aligned} & \text { Period }=\frac{4.8 \mathrm{~s}}{3}=1.6 \mathrm{~s} \\ & f=\frac{1}{T}=\frac{1}{1.6 \mathrm{~s}}=0.625=0.63 \mathrm{~Hz} \end{aligned}$	Evidence of use of graph to find T Frequency	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
01.2	$\begin{aligned} \text { Maximum velocity }=\omega A & =2 \pi f A \\ & =2 \times 3.14 \times 0.63 \times 0.02 \\ & =0.0785 \mathrm{~m} \mathrm{~s}^{-1}=0.079 \mathrm{~m} \mathrm{~s}^{-1}=\left(7.9 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	Evidence of use of frequency	1 1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3.6.1.2
01.3	Find the maximum gradient		1	1	3.4.1.3
01.4	Sinusoidal/same number of waves/frequency/periodic time Inverted/a negative cosine graph Maximum acceleration $=\omega^{2} A=(2 \pi f)^{2} A=0.308 \mathrm{~m} \mathrm{~s}^{-2}=0.31 \mathrm{~m} \mathrm{~s}^{-2}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.6.1.2
01.5	Condition for simple harmonic motion is that $a \propto-x$ So the graph of a is the same shape as that of x, but inverted		1	1	3.6.1.2
02.1	Strategy: States that readings of T (as the dependent variable) will be measured for different values of independent variable, wire diameter, d. Clearly identifies at least 2 correct control variables: length/number of coils on spring/ mass Make springs using wire of different diameters and measure the time period Repeat measurements, omit outliers, find mean	Identifies dependent, independent and 2 control variables Change d, measure T Repeat, take mean How to deal with outliers	1 1 1 1	1	WS
02.2	Measure the time for 10 oscillations and divide the time by 10		1	2	WS
02.3	Plausible reason, e.g. the length of wire is the same so the volume/mass of the wire will vary with the area of the wire, which is proportional to d^{2}		1	3	3.4.2.1

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
02.4	Use the time period and mass to find k $\begin{aligned} & T=2 \pi \sqrt{\frac{m}{k}} \\ & k=\left(\frac{2 \pi}{T}\right)^{2} m \end{aligned}$ Plot a graph of k (y-axis) against d^{2} (x-axis), and if it is a straight line then the hypothesis is correct	Evidence of use of equation to find k Correct axes identified	1 1	3	3.6.1.3
03.1	$T=2 \pi \sqrt{\frac{m}{k}}$ Plot a graph of T against $\sqrt{\frac{1}{k}}$: the gradient $=2 \pi \sqrt{m}$ Or Plot T^{2} against $\frac{1}{k}$: the gradient $=4 \pi^{2} m$ Collect values of time period and spring constant Change k, measure time period, use at least 6 different springs Displace the trolley and measure the time for many oscillations with a stop clock, e.g. 5, and divide by 5 to find each time period Repeat measurements and find the average time period for each value of k	Correctly identifies variables to plot, and how gradient relates to mass Indication of range of independent variable Accurate measurement of time Repeat measurements	1 1 1 1	1	3.6.1.3
03.2	Use the full reading on the stopwatch (to hundredths of a second) in measurements and calculation of the mean Round up to one decimal place, and use uncertainty in using the stopwatch $= \pm 0.2 \mathrm{~s}$ due to reaction time for both starting and stopping the stopwatch Giving a total uncertainty of $\pm 0.4 \mathrm{~s}$	Use of full display on stopwatch until the calculation of final value Estimation of reaction time Total uncertainty is double the reaction time	1 1 1	1	WS
03.3	Suitable method: Set up the light gate so that it is horizontal and triggered by the mass when it goes through its equilibrium position Attach a straw/light rod to the mass that breaks the beam as the mass goes through its equilibrium position The measurement of T will be double the time measured by the light gate	Suitable practical arrangement Measurement of T that is accurate for the arrangement	1 1	1	3.6.1.2

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
03.4	Each spring produces a restoring force of $-k x$, so the total restoring force $=-2 k x$ $m a=-2 k x$ compared to $m a=-k x$ so $\omega^{2}=\frac{2 k}{m}, \omega$ increases by $\sqrt{2}$ $T=\frac{2 \pi}{\omega}$ so T is reduced by $\frac{1}{\sqrt{2}}$	Analysis to produce double the restoring force Use of $a=\omega^{2} x$ Answer	1 1 1	2	3.6.1.2
04.1	For each length: Allow the pendulum to swing 3 times (or more) Take the times recorded by the light gate and double them to find the time period Find the mean of all of the measurements		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1	3.6.1.3

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers									Extra information	Mark	AO	Spec reference	
04.2											1	2	3.6.1.3	
	x-axis length, y-axis T^{2} Line of best fit through (0,0) Line of best fit ignoring anomalous result, with gradient of $\frac{4.0 \mathrm{~s}^{2}}{1 \mathrm{~m}}$ $T=2 \pi \sqrt{\frac{l}{g}}$ $T^{2}=4 \pi^{2} \frac{l}{g}$ so graph of T^{2} versus l has a gradient of $\frac{4 \pi^{2}}{g}$ $g=\frac{4 \pi^{2}}{\text { gradient }}=\frac{4 \pi^{2}}{4.0}=9.9(9.87) \mathrm{m} \mathrm{~s}^{-2}$ Both labels needed of equation Allow 9.62-10.1													
												1		
												1		
												1		

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
04.3	Bigger - small angle approximation does not hold, bob may fall rather than swing, time period will be shorter than it should be g will be smaller than it should be Smaller - amplitude does not affect time period, g not affected	Do not allow effect on g without explanation	1 1	1	3.6.1.3
04.4	Systematic error in measurement of length		1	2	3.4.2.2
05.1	The angle through which the pendulum is displaced should be small so that you can use the small angle approximation So that $T=2 \pi \sqrt{\frac{l}{g}}$ pendulum equation, which is independent of mass		1 1	1	3.6.1.3
05.2	$\begin{aligned} & x=A \cos \omega t \\ & A=3.2 \times 10^{-2} \mathrm{~m}, \omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.4}=4.5 \mathrm{rad} \mathrm{~s}^{-1} \\ & x=3.2 \times 10^{-2} \cos (4.5 t) \end{aligned}$	Calculation of angular velocity Equation	1 1	2	3.6.1.2
05.3	Maximum velocity $=\omega A=4.5 \times 0.032=0.14 \mathrm{~m} \mathrm{~s}^{-1}$ Maximum kinetic energy $=\frac{1}{2} m v^{2}=\frac{1}{2} \times 0.26 \times(0.14)^{2}=2.7 \times 10^{-3} \mathrm{~J}$ Graph that is correct shape ($y=1-x^{2}$) Maximum labelled, x-axis from -3.2 cm to +3.2 cm	Calculation of maximum kinetic energy	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.2

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
05.4	Assuming the total energy is constant, the potential energy versus time graph is x^{2} graph So that the kinetic energy + potential energy at any position = total energy Or $\text { Total energy }=\frac{1}{2} k A^{2}$ So potential energy = total energy - kinetic energy $=\frac{1}{2} k A^{2}-\frac{1}{2} m v^{2}$	Assumption description	1 1	1	3.6.1.3
05.5	The mass decreases, so kinetic energy decreases The line will not be symmetrical/the line will reach a lower value		1	2	3.6.1.3
06.1	Bathroom scales are compressed when you stand on them by an amount that is proportional to your weight/mass In the International Space Station, both the scales and the astronaut are in free fall so the scales will not be compressed / gravitational field strength is lower		1 1	2	3.4.1.1
06.2	$\begin{aligned} T & =2 \pi \sqrt{\frac{m}{k}} \\ k & =m\left(\frac{2 \pi}{T}\right)^{2} \\ & =68.62 \mathrm{~kg} \times\left(\frac{2 \pi}{2.084}\right)^{2} \\ & =623.8 \mathrm{Nm}^{-1} \end{aligned}$		1 1	2	3.6.1.3
06.3	$\begin{aligned} 0.9 & \times 68.62 \mathrm{~kg}=61.76 \mathrm{~kg} \\ T & =2 \pi \sqrt{\frac{61.76 \mathrm{~kg}}{623.8 \mathrm{Nm}^{-1}}} \\ & =1.977 \mathrm{~s} \end{aligned}$ (T is proportional to \sqrt{m} so as mass decreases so does periodic time)		1	2	3.6.1.3

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
06.4	Max displacement = amplitude, which is proportion to energy Energy transferred to thermal store due to friction		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.6.1.3
06.5	No The mass depends on the time period, which is independent of amplitude		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.6.1.3
07.1	$\begin{aligned} & \text { Volume of water displaced }=A \times x=0.75 \mathrm{~cm}^{2} \times 1.0 \mathrm{~cm}=0.75 \mathrm{~cm}^{3} \\ & \text { Mass of water }=\text { density of water } \times \text { volume }=0.75 \mathrm{~cm}^{3} \times 1 \mathrm{~g} \mathrm{~cm}^{-3} \\ & =0.75 \mathrm{~g}=7.5 \times 10^{-4} \mathrm{~kg} \\ & \text { Weight }=m g=7.5 \times 10^{-4} \mathrm{~kg} \times 9.81 \mathrm{Nkg}^{-1}=7.357 . . \times 10^{-3} \mathrm{~N} \end{aligned}$	Correct use of equations for density and weight	2	2	3.4.2.1
07.2	The restoring force is proportional to the distance that the tube is displaced from its equilibrium position ORF $=-A g \rho x$	Explanation of $F \propto x$	1	3	3.6.1.2
07.3	$\begin{aligned} & \text { Acceleration }=\frac{F}{m}=\frac{7.4 \times 10^{-3} \mathrm{~N}}{12 \times 10^{-3} \mathrm{~kg}} \\ & a_{\max }=0.61 \mathrm{~m} \mathrm{~s}^{-2} \\ & a_{\max }=\omega^{2} A=(2 \pi f)^{2} A \\ & f=\sqrt{\frac{a_{\max }}{A(2 \pi)^{2}}} \\ & f=\sqrt{\frac{0.61 \mathrm{~m} \mathrm{~s}^{-1}}{0.01 \mathrm{~m}(2 \pi)^{2}}} \\ & f=1.2(4) \mathrm{Hz} \\ & T=\frac{1}{f}=\frac{1}{1.24 \mathrm{~Hz}}=0.80 \mathrm{~s} \end{aligned}$	Calculation of acceleration Use of $a_{\text {max }}=\omega^{2} A$ Alternatively, use $a_{\text {max }}=\omega^{2} A$ to find ω, then use $T=\frac{2 \pi}{\omega}$ Answer	1 1 1	3	3.6.1.2

A Level AQA Physics

12 Simple harmonic motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.4	Restoring force $F=-A g \rho x$ $\begin{aligned} & a=-\frac{\text { area } \times g \times \text { density }}{\text { mass of tube }} \times x \\ & \omega^{2}=\frac{\text { area } \times g \times \text { density }}{\text { mass of tube }}=(2 \pi f)^{2}=\frac{2 \pi^{2}}{T^{2}} \\ & \text { density } \propto \frac{1}{T^{2}} \end{aligned}$ A plot of density versus $\frac{1}{(\text { period })^{2}}$ is a straight line	Derivation of value of ω^{2} Manipulation to show time period Answer	1 1 1	3	3.4.2.1
07.5	A series circuit with an LDR and a fixed resistor A cell/battery and a voltmeter across either the LDR or resistor		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.5.1.5
08.1	$k=\frac{F}{x}=\frac{700 \mathrm{~N}}{3.0 \times 10^{-2} \mathrm{~mm}}=23000 \mathrm{~N} \mathrm{~m}^{-1}$		1	2	3.4.2.1
08.2	$\begin{aligned} & f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{23000}{1200}}=0.70 \mathrm{~Hz} \\ & T=\frac{1}{f}=\frac{1}{0.70}=1.4(2) \mathrm{s} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.3
08.3	If the car goes over a bump/speed bump, it will displace the car from its equilibrium position		1	3	3.6.1.2
08.4	$T=2 \pi \sqrt{\frac{m}{k}}$ Either: plot T^{2} versus m, gradient $=\frac{4 \pi^{2}}{k}$ Or: plot T versus \sqrt{m}, gradient $=2 \pi \sqrt{\frac{1}{k}}$	Appropriate plot Gradient that matches plot	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.6.1.3
08.5	The oscillations are heavily/critically damped		1	2	3.6.1.4

A Level AQA Physics
 12 Simple harmonic motion - answers

Skills box answers
Question Answer

1
Use a fiducial marker (such as a pin) stuck at the equilibrium point of the mass.
Reduce parallax by observing oscillation at the same level as the fiducial marker/mass.
Use small displacements of the mass so that the mass hanger doesn't 'jump' at the minimum displacement of the oscillation.
Include a measurement of reaction time in the measured time period.

