A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
01.1	There is a force/acceleration directed towards the centre of the circle/at right angles to the velocity		1	1	3.6.1.1
01.2	$\begin{aligned} & \text { Angle }=2 \pi \text { radians } \\ & \text { Time }=225 \times 24 \times 3600=1.94 \times 10^{7} \mathrm{~s} \\ & \omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.94 \times 10^{7}}=3.23 \times 10^{-7} \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	Correct angle and time Answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
01.3	$\begin{aligned} r=67.24 \times 10^{6} \times 1609 \mathrm{~m} & =1.08 \times 10^{11} \mathrm{~m} \\ \text { Centripetal acceleration } & =\omega^{2} r \\ & =\left(3.23 \times 10^{-7} \mathrm{rad} \mathrm{~s}^{-1}\right)^{2} \times 1.08 \times 10^{11} \mathrm{~m} \\ & =1.13 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ Or Speed $=\frac{2 \pi r}{T}=\frac{2 \pi \times 1.08 \times 10^{11} \mathrm{~m}}{1.94 \times 10^{7} \mathrm{~s}}=34978 \mathrm{~m} \mathrm{~s}^{-1}$ Centripetal acceleration $=\frac{v^{2}}{r}=\frac{34978^{2}}{1.08 \times 10^{11}}$ $=1.13 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}$	Correct distance Use $\omega^{2} r$ or $\frac{v^{2}}{r}$ Answer	1 1 1	2	3.6.1.1
01.4	$\begin{aligned} F & =m a \text { or } m=\frac{F}{a} \\ m & =\frac{5.6 \times 10^{22} \mathrm{~N}}{1.13 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}} \\ & =4.95 \times 10^{24} \mathrm{~kg} \end{aligned}$		1	2	3.6.1.1
01.5	$\begin{aligned} & v=\frac{2 \pi r}{T}=\frac{2 \pi \times 1.05 \times 10^{11} \mathrm{~m}}{365 \times 4 \times 3600}=29885 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { Centripetal acceleration }=\frac{v^{2}}{r}=\frac{29885^{2}}{1.05 \times 10^{11}} \\ & =5.95 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Which is about half the centripetal acceleration of Venus	Calculation of speed Calculation of centripetal acceleration Comment	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	2 3	3.6.1.1
02.1	Vertical arrow downwards labelled weight/force of Earth on car Vertical arrow upwards of equal length labelled normal force		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3.6.1.1

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
02.2	TWO OF: If it is stationary, the normal force equals the weight If it is not zero, the normal force is less than the weight At a maximum speed, the weight is not sufficient to keep the car on the road		2	1	3.6.1.1
02.3	$\begin{aligned} & \text { Centripetal force }=\begin{aligned} \frac{m v^{2}}{r} & =\frac{1600 \times 9^{2}}{22} \\ & =5890 \mathrm{~N} \end{aligned} \\ & \text { Centripetal force }=\text { weight }- \text { normal force } \\ & \text { Normal force }=\text { weight }- \text { centripetal force } \\ & \\ & =1600 \times 9.8-5890=9789 \mathrm{~N}=9800 \mathrm{~N} \end{aligned}$	Calculation of centripetal force Showing equation for normal force Answer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
02.4	The maximum speed happens when the normal force is zero, so the centripetal force = weight. $\begin{aligned} & \frac{m v^{2}}{r}=m g \\ & \begin{aligned} v=\sqrt{g r} & =\sqrt{9.8 \times 22} \\ & =14.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \end{aligned}$	Explanation showing normal force $=0$ Answer	1 1	3	3.6.1.1
03.1	Tension		1	1	3.6.1.1
03.2	Example calculation: Mass of cork $=25 \mathrm{~g}$ Radius of orbit $=30 \mathrm{~cm}$ Time for one orbit $=1 \mathrm{~s}$ $\begin{aligned} & v=\frac{2 \pi r}{T}=\frac{2 \pi \times 0.3}{1}=1.88 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { Centripetal force }=\frac{m v^{2}}{r}=\frac{0.025 \times 1.88^{2}}{0.3}=0.3 \mathrm{~N} \end{aligned}$	Correct estimates: Estimate of mass between 10 g and 100 g Estimate of radius between 20 cm and 50 cm Estimate of time between 0.5 s and 2 s Calculation of force commensurate with estimates Values between 2 N and 0.05 N	1 1	2	3.6.1.1

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
03.3	At the top of the circle, the tension is smaller than the tension in $\mathbf{0 3 . 2}$ At the bottom of the circle, the tension is bigger than the tension in 03.2		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
03.4	$\text { Minimum speed is when the tension }=0 \text { and/or centripetal force }=\text { weight }$ $\begin{aligned} \frac{m v^{2}}{r} & =m g \\ v & =\sqrt{g r}=\sqrt{9.8 \times 0.3}=1.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
04.1	$v=\omega r, \omega=\frac{v}{r}=\frac{5.3}{0.6}=8.8 \mathrm{rad} \mathrm{s}^{-1}$		1	2	3.6.1.1
04.2	Frequency $=\frac{8.8}{2 \pi}=\frac{8.8 \mathrm{rad} \mathrm{s}^{-1}}{2 \pi}=1.40 \mathrm{~Hz}$		1	2	3.6.1.1
04.3	Friction (between the bicycle tyre and the road)		1	1	3.6.1.1
04.4	$\begin{aligned} & F_{\mathrm{c}}=N \sin \theta \\ & m g=N \cos \theta \\ & \frac{F_{\mathrm{c}}}{m g}=\tan \theta \text { so } F_{\mathrm{c}}=m g \tan \theta \end{aligned}$	reject force triangles methods since vertical and horizontal resolution is asked for in question $\text { allow } F_{\mathrm{c}}=\frac{m g \sin \theta}{\cos \theta}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
04.5	$\begin{aligned} m g \tan \theta & =\frac{m v^{2}}{r} \\ v & =\sqrt{g r \tan \theta}=\sqrt{9.8 \times 50 \times \tan 15}=11 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
04.6	The frequency would increase as speed increases, and so does angular velocity		1	3	3.6.1.1
05.1	Using Newton's first law, each person will continue in a straight line unless a force acts That force is the normal force of the wall of the drum on the person/the wall pushes them in		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 2	3.6.1.1

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
05.2	The operators remove the floor when there is sufficient frictional force to balance the weight of the person, i.e. weight $=m g$ The frictional force depends on the normal force, which is the centripetal force, which depends on $m, \frac{m v^{2}}{r}$ So the mass cancels - the speed required to produce sufficient frictional force does not depend on the mass.	Weight $=m g$, which balances F F depends on N, which depends on m So m cancels	1 1 1	3	3.6.1.1
05.3	$\begin{aligned} & 56 \mathrm{rpm}=\frac{56 \times 2 \pi \mathrm{radians}}{60 \mathrm{~s}}=5.86 \mathrm{rad} \mathrm{~s}^{-1} \\ & \text { Frequency }=\frac{\omega}{2 \pi}=\frac{5.86 \mathrm{rads}^{-1}}{2 \pi}=0.93 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1
05.4	Centripetal acceleration $=\omega^{2} r=5.86^{2} \times 1.9 \mathrm{~m}=0.93 \mathrm{~m} \mathrm{~s}^{-2}$		1	2	3.6.1.1
05.5	They could fit more people on the ride/make more money They would need to accelerate the drum to a much larger angular velocity in order to operate the drum successfully		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.6.1.1
06.1	The pilot experiences 'apparent' weight as the normal force between themself and the seat This force changes as the plane loops. At the bottom, the normal force $=$ centripetal force + weight. At the top, the normal force $=$ centripetal force weight. The centripetal force will change during the loop since the speed of the plane will not be constant		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3.6.1.1
06.2	The force of the air on the plane/lift and gravity in the top half of the loop		1	1	3.6.1.1
06.3	$\begin{aligned} & \text { The force of the seat is the centripetal force }=\frac{m v^{2}}{r} \\ & \text { speed, } v=\frac{2 \pi r}{T} \text {, so } r=\frac{v T}{2 \pi}=\frac{70 \times 12.4}{2 \pi}=138 \mathrm{~m} \\ & F_{\mathrm{N}}=\frac{m v^{2}}{r}=\frac{70 \times 70^{2}}{138}=2485 \mathrm{~N}=2500 \mathrm{~N} \end{aligned}$	Recognition that gravity does not affect the pilot in this position explicit or implied Calculation of radius Calculation of force	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.6.1.1

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
06.4	Height difference between top and bottom of loop $=2 \times 138=276 \mathrm{~m}$. Energy considerations: $\begin{aligned} & \frac{1}{2} m v_{\text {bottom }}^{2}=m g h+\frac{1}{2} m v_{\mathrm{A}}^{2} \\ & v_{\mathrm{A}} \end{aligned}=\sqrt{v_{\text {bottom }}^{2}-2 g h} .$ The speed is approximately halved The force will be reduced by a factor of about 4 (556 N)	Use of conservation of energy New speed Effect on value above	1 1 1	2	3.6.1.1
06.5	Information needed: Height of plane: to work out the time that the ball takes to hit the ground using $s=u t+\frac{1}{2} a t^{2}$ Speed of plane at the bottom of the loop: to work out the horizontal distance using $d=v t$ The position on the ground above which the plane will release the ball	All 3 factors and explanations: 4 marks 2 factors and explanations: 3 marks 1 factor and explanation: 2 marks Factors without explanation: 1 mark	4	3	$\begin{aligned} & 3.4 .1 .3 \\ & 3.4 .1 .4 \end{aligned}$
06.6	Correct suggestion/explanation, e.g. The plane higher than expected, time to fall is greater, horizontal distance is greater, ball will overshoot the pool	Suggestion: 1 mark Explanation: 1 mark	2	3	$\begin{aligned} & 3.4 .1 .3 \\ & 3.4 .1 .4 \end{aligned}$
07.1	${ }^{T}$	Two arrows only Labelled tension, or T and weight, or $m g$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	3.4.1.1

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.2	Resolving forces: $\begin{gathered} T \cos \theta=m g \\ T \sin \theta=\frac{m v^{2}}{r} \\ \tan \theta=\frac{v^{2}}{g r} \end{gathered}$ The angle/radius is independent of the mass $\begin{aligned} & g r \tan \theta=v^{2}, \tan \theta \approx \sin \theta=\frac{r}{l} \\ & \frac{g r^{2}}{l}=v^{2} \\ & \quad r=v \sqrt{\frac{l}{g}} \end{aligned}$ r is proportional to the speed of the object, so the radius for the second toy is bigger	Resolution of forces Elimination of T Conclusion about mass Manipulation to show radius proportional to v Conclusion	1 1 1 1	2	3.4.2.2
07.3	Appropriate method. e.g. Radius: video measurement with horizontal ruler behind the orbit / measure length of string and difference in height and use trig Estimated uncertainty $= \pm 2 \mathrm{~cm}$. Allow $0.5 \mathrm{~cm}-4 \mathrm{~cm}$ Percentage uncertainty e.g. $=2 \times \frac{100}{17}=12 \%$ Time: video measurement with stopwatch in view/ time several cycles and divide time by that number Estimated uncertainty $= \pm 0.05 \mathrm{~s}$ allow $0.01 \mathrm{~s}-1 \mathrm{~s}$ Percentage uncertainty $=0.05 \times \frac{100}{1.3}=3.8 \%$	$\begin{aligned} & \text { Appropriate methods }(1 \times 2) \\ & \text { Estimated uncertainties }(1 \times 2) \\ & \text { Calculated percentages }(1 \times 2) \end{aligned}$	3×2	1	3.1.2

A Level AQA Physics

11 Circular motion - answers

Question	Answers	Extra information	Mark	AO	Spec reference
07.4	No The distance from the centre of the orbit $=$ horizontal speed \times time Time depends on height from floor as $s=\frac{1}{2} a t^{2}$ For the first toy, both the speed and time are smaller (slower speed, smaller angle), so the distance will always be smaller than the second toy	Evidence of use of $s=\frac{1}{2} a t^{2}$, explicitly or implied Conclusion	1 1	3	3.6.1.1
08.1	There is a force on the student that is perpendicular to their velocity		1	1	3.6.1.1
08.2	$\begin{aligned} & m g \Delta h=\frac{1}{2} m v^{2} \\ & v=\sqrt{2 g \Delta h} \\ & =\sqrt{2 \times 9.81 \times(2.7-1.4)} \\ & =5.1 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	Evidence of conservation of energy	1	2	3.4.1.8
08.3	Time to fall to surface of water using $s=\frac{1}{2} a t^{2}$ $\begin{aligned} t & =\sqrt{\frac{2 s}{g}} \\ & =\sqrt{\frac{2 \times 1.4}{9.81}} \\ & =0.29 \mathrm{~s} \end{aligned}$ In that time, the student will travel $\begin{aligned} s=v t & =5.1 \mathrm{~m} \mathrm{~s}^{-1} \times 0.29 \mathrm{~s} \\ & =1.5 \mathrm{~m} \end{aligned}$ yes, they will reach the platform	Calculation of time Time and speed to find distance Answer and conclusion	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	2	3.4.1.3
08.4	Sensible reasoning. e.g. If the rope stretches, the student will be travelling faster when they reach point \mathbf{B}, as the change in height is bigger The time before they hit the water will be smaller, so they will travel about the same distance		2	3	3.4.1.3

A Level AQA Physics

11 Circular motion - answers

Skills box answers

Question	\quad Answer
$\mathbf{1}$	$\omega=\frac{2 \pi}{T}=\frac{2 \pi}{(30 \times 60)}=3.5 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
$\mathbf{2}$	$\omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.5 \times 10^{-16}}=4.2 \times 10^{16} \mathrm{rad} \mathrm{s}^{-1}$
$\mathbf{3}$	$F=\frac{m v^{2}}{r}=\frac{4.0 \mathrm{~kg} \times\left(8.6 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}{1.1} \mathrm{~m}$
so $F=270 \mathrm{~N}$ to 2 significant figures	

