

Question	Answers	Extra information	Mark	AO Spec reference
01.1	The energy/enthalpy change when 1 mole gaseous atoms Gains 1 mole of electrons Under standard conditions		1 1 1	3.1.8.1 AO1
01.2	$\frac{Mg^{2+}(g) + O(g) + 2e^{-}}{enthalpy of atomisation of oxygen}$ $\frac{Mg^{2+}(g) + \frac{1}{2}O_2(g) + 2e^{-}}{Mg^{2+}(g) + \frac{1}{2}O_2(g) + 2e^{-}}$ $\frac{Mg^{2+}(g) + \frac{1}{2}O_2(g) + 2e^{-}}{Mg^{2+}(g) + \frac{1}{2}O_2(g) + e^{-}}$ second ionisation energy of Mg $\frac{Mg(g) + \frac{1}{2}O_2(g)}{Mg(g) + \frac{1}{2}O_2(g)}$ enthalpy of atomisation of Mg $\frac{Mg(g) + \frac{1}{2}O_2(g)}{enthalpy}$ enthalpy of atomisation of Mg $\frac{Mg(g) + \frac{1}{2}O_2(g)}{enthalpy}$ $\frac{Mg(g) + \frac{1}{2}O_2(g)}{Mg(g) + \frac{1}{2}O_2(g)}$ $Mg(g)$	1 mark for each correct step of the Born-Haber cycle.	6 1 1	3.1.8.1 AO2
01.3	Electrons are attracted to the nucleus Energy released when they enter the lowest possible energy level		1 1	3.1.8.1 AO3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.1	The enthalpy/energy change when 1 mole Of gaseous atoms Is formed under standard conditions		1 1 1	3.1.8.1 AO1
02.2	$\Delta H = 164 + 549 + 1064 + (2 \times 243) - (2 \times 349) - 2150$ = -585 kJ mol ⁻¹	Allow correct Born-Haber cycle Mark 2 for correct doubling of chlorine values	1 1	3.1.8.1 AO2
02.3	Removing an electron from a positive ion More energy required to overcome attraction	Allow reference to smaller radius/size	1 1	3.1.8.1 AO3
02.4	Bond enthalpy results in 2 moles of Cl atoms being formed So double the atomisation by definition	Allow both correct definitions	1 1	3.1.8.1 AO3
03.1	The enthalpy/energy change when one mole of solid ionic compound is formed From its constituent ions at an infinite distance Under standard conditions	Allow 'far apart'	1 1 1	3.1.8.1 AO1
03.2	$\begin{array}{c} \underbrace{\text{Li}(s) + \frac{1}{2}F_{2}(g)}_{\text{Li}(g) + \frac{1}{2}F_{2}(g)} \\ \hline \\ \underbrace{\text{Li}(g) + \frac{1}{2}F_{2}(g)}_{\text{Li}(g) + F(g)} \\ \hline \\ \underbrace{\text{Li}(g) + F(g)}_{\text{Li}(g) + F(g) + e^{-}} \\ \hline \\ \underbrace{\text{Li}F(g) + F(g) + e^{-}}_{\text{Li}F(g)} \end{array}$	Must have state symbols Do not accept multiples	4	3.1.8.1 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.3	616 + 159 + 520 + 79 - 328 = 1046		1	3.1.8.1
	-1046	Must have - sign for second mark	1	MS2.4
03.4	Very little/low/no degree of covalency Because the values are very close So no distortion of electron cloud/polarity	Mark in accordance with 03.3 answer.	1 1 1	3.1.8.1 AO3
04.1	The enthalpy/energy change when 1 mole of gaseous ions Are completed surrounded by water To create an infinitely dilute solution	Allow reference to ions "no longer interacting/influencing each other" or WTTE	1 1 1	3.1.8.1 AO1
04.2	Impossible to add exactly the right amount of water/ Some crystals will dissolve		1 1	3.1.8.1 AO3
04.3	Thermometer Polystyrene cup with lid Reaction in solution Glass beaker		2	3.1.4.2 AO3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.4	This question is marked using Levels of Response.	Indicative content	6	3.1.8.1
	Examiners should apply a 'best-fit' approach to the marking.	Stage 1: Measuring out the copper sulfate and water		AO3
	Level 3 (5—6 marks) All stages are covered, and the explanation of each stage is generally correct and virtually complete.	1a uses suitable equipment (scales balance)		
	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2, stage 3 and then stage 4.	1b uses named suitable mass (between 2–8g) of both salts		
	Level 2 (3–4 marks) Coherent communication where each stage is outlined	1c evidence of weigh-reweigh technique to determine mass of salt	a salts eweigh e mass of salt ater le equipment pette) both et up	
	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered, and the explanations are generally correct and virtually complete.	delivered 1d Known volume of water measured using suitable equipment		
	Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4.	(measuring cylinder/pipette)		
	stage 3 and then stage 4.Stage 2: Determining bothLevel 1 (1-2 marks) Two stages are covered but the explanation of each stageenthalpies			
	may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.	2a simple calorimeter set up (polystyrene cup and lid)		
	Answer shows some progression between two stages	2b basic method of measuring starting temperature (with thermometer) over time (min 3 mins) then adding and recording the temperature for a time after (min 4 mins)		
		2c acknowledgement that when salt is added temperature should not be recorded		

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
	Level 1 (1—2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.	2d Graphical determination of instantaneous temperature rise by extrapolation		
	Answer shows some progression between two stages	Stage 3: Calculating ΔH		
		3a use of <i>q</i> = <i>mc</i> θor equivalent		
		3b: use of $M_{ m r}$ to find moles and hence ΔH_1 and ΔH_2		
		3c Use of Hess cycle or $\Delta H_1 - \Delta H_2$ Partially complete means ³ / ₄ of stage met		
04.5	(2099) + (1080) – (67) = 3112 kJ mol ⁻¹	Allow correct cycle or diagram −3112 scores 1 mark	2	3.1.4.3 AO2 MS2.4
05.1	The measure of disorder of a system	Allow 'chaos'	1	3.1.8.2 AO1
05.2	Enthalpy change = Σ Products - Σ Reactants	Allow correct cycle	1	3.1.8.2
	$= (-709 + -394 + -286) - (-483 + -951) = 45 \text{ kJ mol}^{-1}$		1	3.1.4.3
	Entropy change = ∑Products – ∑Reactants = 175+215+70 – 158 –102 = 200 J mol ⁻¹		1 1	AO2 MS2.2, 2.3, 2.4
	$\Delta G = \Delta H - T \Delta S$	Can been awarded through working	1	
	0 = 45 - 0.2T	Mark for conversion entropy	1	
	<i>T</i> = 45/0.2		1	
	= 225 K	Answer of 225 °C scores only 7	1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.3	Temperature way below freezing. Ethanoic acid will be solid.	Ignore references to water being ice unless specifically referenced in terms of solution	1	3.1.8.2 AO3
06.1	$2K^{+}(g) + O^{2-}(g)$ $2K^{+}(g) + 2e^{-} + O(g)$ $\Delta_{EA2}H(O) = +844$ $\Delta_{EA1}H(O) = -142$ $2K^{+}(g) + e^{-} + O^{-}(g)$ $2K(g) + O(g)$ $\Delta_{at}H(O) = +248$ $2K(g) + O(g)$ $\Delta_{LE}H(Na_{2}O)$ $\Delta_{LE}H(Na_{2}O)$ $\Delta_{f}H(K_{2}O) = -362$ $K_{2}O(g)$ $\Delta_{f}H(K_{2}O) = -362$ $K_{2}O(g)$ $Lst mark is for overall shape$ $2nd mark is for correct equations$ $3rd mark is for doubling K equations$ $\Delta_{Lf}H = -392 + (2 \times 90) + (2 \times 418) + 248 + (-142) + 844$ $= -2328 \text{ kJ mol}^{-1}$	2358 scores all 6 marks only if accompanied by a correct cycle. Without cycle, max score is 3 . Do not penalise scale of lines on any Born-Haber cycle constructed An answer of 1850 with cycle scores 3 marks	6	3.1.8.1 MS2.4 AO2
06.2	Oxygen is a gas, so more disordered		1 1	3.1.8.2 AO3

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.3	$\Delta G = \Delta H - T \Delta S$		1	3.1.8.2 AO2
	$\Delta S = 94 - (2 \times 67) - (205/2) = -142.5 \mathrm{J}\mathrm{mol}^{-1}$		1	MS2.1, 2.2, 2 3 2 4
	<i>T</i> = 573	Accent - 473.65	1	2.3, 2.1
	$\Delta G = -392 - (573 \times -0.1425)$	Accept 413.03	1	
	$= -310 \text{kJ}\text{mol}^{-1}$		1	
	Reaction is feasible as ΔG is less than 0		1	
07.1	Correct axis labelled Suitable scale (plotted points should take up over half the paper) Points plotted accurately	Allow 1 point plotted outside 1mm	1 1 1	3.1.8.2 MS3.3
	Read off temperature from line temperature = 1112 K	Allow 1110 – 1120 K	1	
07.2	PV = nRT		1	3.1.2.3
	n = PV/RT		1	MS2.2, 2.3, 2.4
	$n = \frac{100000 \times 0.5}{8.31 \times 298} = 20.2$ moles		1	
	mass = 100.1 × 20.2 = 2022 g	Accept 2.022 kg	1	
07.3	$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$		1	3.1.2.5 AO1

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.4	$M_{ m r}{ m Ca(OH)}_2$ = 40.1+ (2 $ imes$ 17) = 74.1		1	3.1.2.5 AO1
	2.28/74.1 = 0. 308 moles		1	MS0.2
	Moles $H_2SO_4 = 0.308$ as 1:1		1	
	concentration= 0.0308/0.5 = 0.0616 mol dm ⁻³		1	
07.5	pH=−log (0.0616 × 2) = 0.91	Must be 2 d.p.	1	3.1.12.2 MS0.4, 2.5 AO2
08.1	Because it is an element		1	3.1.4.1 AO1
08.2	$\Delta H = -111 - (-75 + -242)$ 206 (kJ mol ⁻¹)		1	3.1.8.2 MS3.3
	ΔS = 3 $ imes$ 131 + 198 – (186 + 189) = 216 J K ⁻¹ mol ⁻¹		1	
	$\Delta G = \Delta H - T\Delta S / = 206 \times 10^3 - (973 \times 216)$ -4168 J mol ⁻¹		1	
	Reaction is feasible as $\Delta G \leq 0$		1	
08.3	Any change made to a system under equilibrium will cause a response Which will oppose the change		1 1	3.1.6.1 AO1

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
08.4	Moles steam = 2.70 Moles CO = 1.30 Moles H_2 = 3.90		1	3.1.10 AO2 MS1.1, 2.2, 2.3
	Mole fractions $CH_4 = 0.7 / 8.6 = 0.0814$ $H_2O = 2.7 / 8.6 = 0.314$ CO = 1.3 / 8.6 = 0.151 $H_2 = 3.9 / 8.6 = 0.453$		1	
	Partial pressures $CH_4 = 0.0814 \times 300 = 24.4$ $H_2O = 0.314 \times 300 = 94.2$ $CO = 0.151 \times 300 = 45.3$ $H_2 = 0.453 \times 300 = 136$		1	
	$Kp = \frac{\rho CO \times \rho^{3}H_{2}}{\rho CH_{4} \times pH_{2}O}$		1	
	$=\frac{45.3\times136^{3}}{24.4\times94.2}=4.96\times10^{4}$		1	
	kPa ²		1	

۲

Skills box answers:

۲

- 1. Units of $k = dm^3 mol^{-1}s^{-1}$
- 2. Units of $K_c = moldm^{-3}$
- 3. Units of K_p = Pa
- 4. Units of $k = dm^6 mol^{-2} s^{-1}$
- 5. Units of $K_c = mol^3 dm^{-9}$

6. Units of $K_p = Pa^3$

© Oxford University Press www.oxfordsecondary.com

 (\bullet)