A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	The energy/enthalpy change when 1 mole gaseous atoms Gains 1 mole of electrons Under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.8.1 } \\ \text { AO1 } \end{gathered}$
01.2		1 mark for each correct step of the Born-Haber cycle.	6 1 1	$\begin{gathered} 3.1 .8 .1 \\ \text { AO2 } \end{gathered}$
01.3	Electrons are attracted to the nucleus Energy released when they enter the lowest possible energy level		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
02.1	The enthalpy/energy change when $\mathbf{1}$ mole Of gaseous atoms Is formed under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO1 } \end{gathered}$
02.2	$\begin{aligned} \Delta \mathrm{H} & =164+549+1064+(2 \times 243)-(2 \times 349)-2150 \\ & =-585 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Allow correct Born-Haber cycle Mark $\mathbf{2}$ for correct doubling of chlorine values	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO2 } \end{gathered}$
02.3	Removing an electron from a positive ion More energy required to overcome attraction	Allow reference to smaller radius/size	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$
02.4	Bond enthalpy results in 2 moles of Cl atoms being formed So double the atomisation by definition	Allow both correct definitions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$
03.1	The enthalpy/energy change when one mole of solid ionic compound is formed From its constituent ions at an infinite distance Under standard conditions	Allow 'far apart'	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.8.1 } \\ \text { AO1 } \end{gathered}$
03.2		Must have state symbols Do not accept multiples	4	$\begin{gathered} \text { 3.1.8.1 } \\ \text { AO1 } \end{gathered}$

[^0]
A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
03.3	$\begin{aligned} & 616+159+520+79-328=1046 \\ & -1046 \end{aligned}$	Must have - sign for second mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO2 } \\ \text { MS2.4 } \end{gathered}$
03.4	Very little/low/no degree of covalency Because the values are very close So no distortion of electron cloud/polarity	Mark in accordance with 03.3 answer.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$
04.1	The enthalpy/energy change when 1 mole of gaseous ions Are completed surrounded by water To create an infinitely dilute solution	Allow reference to ions "no longer interacting/influencing each other" or WTTE	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.8.1 } \\ \text { AO1 } \end{gathered}$
04.2	Impossible to add exactly the right amount of water/ Some crystals will dissolve		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$
04.3			2	$\begin{gathered} 3.1 .4 .2 \\ \text { AO3 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 6 - answers

Question	Answers	Extra information	Mark	AO Spec reference
04.4	This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking.	Indicative content Stage 1: Measuring out the copper sulfate and water 1a uses suitable equipment (scales balance) 1b uses named suitable mass (between $2-8 \mathrm{~g}$) of both salts 1c evidence of weigh-reweigh technique to determine mass of salt delivered 1d Known volume of water measured using suitable equipment (measuring cylinder/pipette) Stage 2: Determining both enthalpies 2a simple calorimeter set up (polystyrene cup and lid) 2 b basic method of measuring starting temperature (with thermometer) over time ($\min 3$ mins) then adding and recording the temperature for a time after (min 4 mins) 2c acknowledgement that when salt is added temperature should not be recorded	6	$\begin{gathered} 3.1 .8 .1 \\ \text { AO3 } \end{gathered}$
	Level $\mathbf{3}$ (5-6 marks) All stages are covered, and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 , stage 3 and then stage 4 .			
	Level 2 (3-4 marks) Coherent communication where each stage is outlined All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered, and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4.			
	Level $\mathbf{1}$ (1-2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.			
	Answer shows some progression between two stages			

[^1]
A Level AQA Chemistry

Chapter 6 - answers

Question	Answers	Extra information	Mark	AO Spec reference
	Level $\mathbf{1}$ (1-2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer shows some progression between two stages	2d Graphical determination of instantaneous temperature rise by extrapolation Stage 3: Calculating ΔH 3a use of $q=m c \theta$ or equivalent 3b: use of M_{r} to find moles and hence ΔH_{1} and ΔH_{2} 3c Use of Hess cycle or $\Delta H_{1}-\Delta H_{2}$ Partially complete means $3 / 4$ of stage met		
04.5	$(2099)+(1080)-(67)=3112 \mathrm{~kJ} \mathrm{~mol}^{-1}$	Allow correct cycle or diagram -3112 scores 1 mark	2	$\begin{gathered} 3.1 .4 .3 \\ \text { AO2 } \\ \text { MS2.4 } \end{gathered}$
05.1	The measure of disorder of a system	Allow 'chaos'	1	$\begin{gathered} \text { 3.1.8.2 } \\ \text { AO1 } \end{gathered}$
05.2	$\begin{aligned} & \text { Enthalpy change }=\sum \text { Products }-\sum \text { Reactants } \\ & =(-709+-394+-286)-(-483+-951)=45 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \text { Entropy change }=\sum \text { Products }-\sum \text { Reactants } \\ & =175+215+70-158-102=200 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \begin{aligned} \Delta G & =\Delta H-T \Delta S \\ 0 & =45-0.2 T \\ T & =45 / 0.2 \\ & =225 \mathrm{~K} \end{aligned} \end{aligned}$	Allow correct cycle Can been awarded through working Mark for conversion entropy Answer of $225^{\circ} \mathrm{C}$ scores only 7	1 1 1 1 1 1 1 1	$\begin{gathered} 3.1 .8 .2 \\ 3.1 .4 .3 \\ \text { AO2 } \\ \text { MS2.2, } 2.3,2.4 \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 6 - answers

Question	Answers	Extra information	Mark	AO Spec reference
05.3	Temperature way below freezing. Ethanoic acid will be solid.	Ignore references to water being ice unless specifically referenced in terms of solution	1	$\begin{gathered} 3.1 .8 .2 \\ \text { AO3 } \end{gathered}$
06.1	1st mark is for overall shape 2nd mark is for correct equations 3rd mark is for doubling K equations $\begin{aligned} \Delta_{L f} H & =-392+(2 \times 90)+(2 \times 418)+248+(-142)+844 \\ & =-2328 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	2358 scores all 6 marks only if accompanied by a correct cycle. Without cycle, max score is 3 . Do not penalise scale of lines on any Born-Haber cycle constructed An answer of 1850 with cycle scores 3 marks	6	$\begin{gathered} \text { 3.1.8.1 } \\ \text { MS2.4 } \\ \text { AO2 } \end{gathered}$
06.2	Oxygen is a gas, so more disordered		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .2 \\ \text { AO3 } \end{gathered}$

A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
06.3	$\begin{aligned} & \Delta G=\Delta H-T \Delta S \\ & \Delta S=94-(2 \times 67)-(205 / 2)=-142.5 \mathrm{~J} \mathrm{~mol}^{-1} \\ & T=573 \\ & \Delta G=-392-(573 \times-0.1425) \\ & =-310 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Reaction is feasible as ΔG is less than 0	Accept -473.65	1 1 1 1 1 1	$\begin{gathered} 3.1 .8 .2 \\ \text { AO2 } \\ \text { MS2.1, } 2.2, \\ 2.3,2.4 \end{gathered}$
07.1	Correct axis labelled Suitable scale (plotted points should take up over half the paper) Points plotted accurately Read off temperature from line temperature $=1112 \mathrm{~K}$	Allow 1 point plotted outside 1 mm Allow 1110-1120 K	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .8 .2 \\ & \text { MS3.3 } \end{aligned}$
07.2	$\begin{aligned} & P V=n R T \\ & n=P V / R T \\ & n=\frac{100000 \times 0.5}{8.31 \times 298}=20.2 \mathrm{moles} \\ & \text { mass }=100.1 \times 20.2=2022 \mathrm{~g} \end{aligned}$	Accept 2.022 kg	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .2 .3 \\ \text { AO2 } \\ \text { MS2.2, 2.3, } 2.4 \end{gathered}$
07.3	$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$		1	$\begin{gathered} 3.1 .2 .5 \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	$\begin{aligned} & M_{\mathrm{r}} \mathrm{Ca}(\mathrm{OH})_{2}=40.1+(2 \times 17)=74.1 \\ & 2.28 / 74.1=0.308 \text { moles } \\ & \text { Moles } \mathrm{H}_{2} \mathrm{SO}_{4}=0.308 \text { as } 1: 1 \\ & \text { concentration }=0.0308 / 0.5=0.0616 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$		1 1 1 1	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO1 } \\ \text { MS0.2 } \end{gathered}$
07.5	$\mathrm{pH}=-\log (0.0616 \times 2)=0.91$	Must be 2 d.p.	1	$\begin{aligned} & \text { 3.1.12.2 } \\ & \text { MS0.4, } 2.5 \\ & \text { AO2 } \end{aligned}$
08.1	Because it is an element		1	$\begin{gathered} \text { 3.1.4.1 } \\ \text { AOO1 } \end{gathered}$
08.2	$\begin{aligned} & \Delta H=-111-(-75+-242) \\ & 206\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ $\begin{aligned} & \Delta S=3 \times 131+198-(186+189)=216 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & \Delta G=\Delta H-T \Delta S /=206 \times 10^{3}-(973 \times 216) \\ & -4168 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ Reaction is feasible as $\Delta G \leq 0$		1 1 1 1 1	$\begin{aligned} & \text { 3.1.8.2 } \\ & \text { MS3.3 } \end{aligned}$
08.3	Any change made to a system under equilibrium will cause a response Which will oppose the change		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.6.1 } \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 6 -answers

Question	Answers	Extra information	Mark	AO Spec reference
08.4	Moles steam $=2.70$			3.1.10
	Moles CO = 1.30		1	AO2
	Moles $\mathrm{H}_{2}=3.90$			MS1.1, 2.2, 2.3
	Mole fractions			
	$\mathrm{CH}_{4}=0.7 / 8.6=0.0814$			
	$\mathrm{H}_{2} \mathrm{O}=2.7 / 8.6=0.314$		1	
	$\mathrm{CO}=1.3 / 8.6=0.151$			
	$\mathrm{H}_{2}=3.9 / 8.6=0.453$			
	Partial pressures			
	$\mathrm{CH}_{4}=0.0814 \times 300=24.4$		1	
	$\mathrm{H}_{2} \mathrm{O}=0.314 \times 300=94.2$			
	$\mathrm{CO}=0.151 \times 300=45.3$			
	$\mathrm{H}_{2}=0.453 \times 300=136$			
	$K p=\frac{p \mathrm{CO} \times p^{3} \mathrm{H}_{2}}{p \mathrm{CH}_{4} \times \mathrm{pH}_{2} \mathrm{O}}$		1	
	$=\frac{45.3 \times 136^{3}}{24.4 \times 94.2}=4.96 \times 10^{4}$		1	
	kPa^{2}		1	

Skills box answers:

1. Units of $k=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
2. Units of $K_{\mathrm{c}}=\mathrm{moldm}^{-3}$
3. Units of $K_{\mathrm{p}}=\mathrm{Pa}$
4. Units of $k=\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
5. Units of $K_{\mathrm{c}}=\mathrm{mol}^{3} \mathrm{dm}^{-9}$
6. Units of $K_{\mathrm{p}}=\mathrm{Pa}^{3}$
© Oxford University Press www.oxfordsecondary.com

[^0]: © Oxford University Press www.oxfordsecondary.com

[^1]: © Oxford University Press www.oxfordsecondary.com

