A Level AQA Chemistry

Chapter 5 - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CI}^{-}(\mathrm{aq})+\mathrm{l}_{2}(\mathrm{aq})$	1 mark for equation 1 mark state symbols	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .7 \\ 3.1 .2 .5 \\ \text { AO1 } \end{gathered}$
01.2	Oxidising agent		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
01.3	$\frac{0.1 \times 26.0}{1000}=0.0026$ moles thiosulfate Moles $\mathrm{I}_{2}=\frac{0.0026}{2}=0.0013$ moles in $25 \mathrm{~cm}^{3}$ 0.013 moles in $250 \mathrm{~cm}^{3}$ 0.013 moles Cl_{2}	Correct answer scores 4 marks	1 1 1 1	$\begin{gathered} 3.1 .2 .5 \\ \text { AO2 } \\ \text { MS } 0.2 \end{gathered}$
01.4	$\begin{aligned} V & =\frac{n R T}{P} \\ V & =\frac{0.013 \times 8.31 \times 298}{101000} \\ & =3.19 \times 10^{-4} \mathrm{~m}^{3} \end{aligned}$	Recall of equation scores 1 mark	1 1 1	$\begin{gathered} \text { 3.1.2.3 } \\ \text { AO2 } \\ \text { MS 2.2, 2.3, } 2.4 \end{gathered}$
01.5	$\left(\frac{3.19 \times 10^{-4}}{0.060}\right) \times 100=0.532 \%$	$5.32 \times 10^{-4} \%$ score 1 mark	2	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO2 } \\ \text { MS } 0.2 \end{gathered}$
01.6	$0.013 \times 71=0.923 \mathrm{~g} \mathrm{Cl}_{2} \text { in } 0.06 \mathrm{~m}^{3}$ Which is much higher than safety limits		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .2 .5 \\ \text { AO3 } \end{gathered}$
02.1	$\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$		1	$\begin{aligned} & \text { 3.1.2.5 } \\ & \text { MS 0.2 } \end{aligned}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 5-answers

Question	Answers	Extra information	Mark	AO Spec reference
02.2	$\begin{aligned} & \mathrm{HNO}_{3}(+) 5 \\ & \mathrm{NO}_{2}(+) 4 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
02.3	$\mathrm{HNO}_{3}+\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} /$		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
02.4	Concentration(s) (of reactants and products) remain(s) constant / stay(s) the same / remain(s) the same / do(es) not change Forward rate = Reverse / backward rate	For M1 accept [] for concentration NOT "equal concentrations" and NOT "concentration(s) is/are the same" NOT "amount" Ignore "dynamic" and ignore "speed" Ignore "closed system" It is possible to score both marks under the heading of a single feature	1	$\begin{aligned} & \text { 3.1.6.1 } \\ & \text { AO3 } \end{aligned}$
02.5	The (forward) reaction / to the right is endothermic or takes in / absorbs heat The equilibrium shifts / moves left to right to oppose the increase in temperature	Allow converse 2nd mark dependent on 1st mark and must involve temperature	1 1	$\begin{aligned} & \text { 3.1.6.1 } \\ & \text { AO3 } \end{aligned}$
02.6	Amount of NO_{2} decreases Equilibrium shifts to the left to reduce the pressure	Allow concentration/partial pressure M3 dependent on M2 and must involve pressure	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .6 .1 \\ \text { AO3 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 5-answers

Question	Answers	Extra information	Mark	AO Spec reference
02.7	Moles at equilibrium $\mathrm{NO}_{2}=3.0$ Mole fractions $\mathrm{NO}_{2}=\frac{3}{4}=0.75 . \mathrm{N}_{2} \mathrm{O}_{4}=\frac{1}{4}=0.25$ Partial pressure $\mathrm{NO}_{2}=0.75 \times 200=150 \mathrm{kPa}$ Partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4-}=0.25 \times 200=50 \mathrm{kPa}$ $K_{\mathrm{p}}=\frac{\left(\mathrm{pNO}_{2}\right)^{2}}{\left(\mathrm{pN}_{2} \mathrm{O}_{4}\right)}=\frac{150^{2}}{50}=450$	Allow e.c.f. Correct workings scores both marks for K_{p} equation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 3.1 .10 \\ \text { AO2 } \\ \text { MS } 2.22 .3 \end{gathered}$
03.1	Methanoic acid		1	$\begin{gathered} \text { 3.3.9.1 } \\ \text { AOO } \end{gathered}$
03.2	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{HCOOH} \rightarrow \mathrm{HCOOC}_{3} \mathrm{H}_{7}+\mathrm{H}_{2} \mathrm{O}$	Allow any correct formula Must have reversible arrow	1	$\begin{gathered} \text { 3.3.9.1 } \\ \text { AO1 } \end{gathered}$
03.3	Reflux To prevent reactants or products evaporating		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.3 .9 .1 \\ \text { AO1 } \end{gathered}$
03.4	Moles of propanol at equilibrium $=0.95$ Moles of methanoic acid at equilibrium $=0.45$ $K_{\mathrm{c}}=\frac{\left[\mathrm{HCOOC}_{3} \mathrm{H}_{7}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{HCOOH}]\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right]}$ or workings $K_{\mathrm{c}}=\frac{\left(\frac{1.05}{2}\right)^{2}}{\left(\frac{0.95}{2}\right) \times\left(\frac{0.45}{2}\right)}=2.58 \text { NO UNITS }$	Allow completed table or can be Found in K_{c} equation	1 1 1 1 1	$\begin{gathered} 3.1 .6 .2 \\ \text { AO2 } \end{gathered}$

A Level AQA Chemistry

Chapter 5 - answers

Question	Answers	Extra information	Mark	AO Spec reference
04.1	(+)5/V/ five		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
04.2	Reducing agent		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
04.3	Enthalpy/Energy change when 1 mole of substance is formed from its elements, under standard conditions with all species in their standard states		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.1 } \\ \text { AO1 } \end{gathered}$
04.4	$\begin{aligned} & \Delta \mathrm{H}=\Sigma \Delta_{f} \mathrm{H} \text { (products) }-\Sigma \Delta_{f} \mathrm{H} \text { (reactants) } \\ & =5(-635)-(-1560)=-3175+1560 \\ & =-1615\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	Or correct cycle. can be shown in calculation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.3 } \\ \text { AO" } \end{gathered}$
04.5	$\mathrm{VCl}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~V}+2 \mathrm{HCl}$	Ignore state symbols	1	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO1 } \end{gathered}$
04.6	HCl is a_gas_so will escape into the atmosphere	Allow removed/lost/separated	1	$\begin{gathered} 3.1 .2 .5 \\ \text { AO3 } \end{gathered}$
05.1	Propanol + sulfuric acid in (round bottom) flask Anti-bumping granules Reflux condenser attached Heat gently Add potassium dichromate dropwise	Allow heart shaped/ quick fit Allow gently/slowly etc.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.3.5.2 } \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 5-answers

Question	Answers	Extra information	Mark	AO Spec reference
05.2	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	Allow multiples	1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
05.3	Orange to green colour change	Allow it would turn green	1	$\begin{gathered} 3.3 .5 .2 \\ \text { AO1 } \end{gathered}$
05.4	Marks awarded for this answer will be determined by the quality of written communication as well as the standard of the scientific response. Examiners should apply a 'best-fit' approach to the marking. Additional tests limits to lower mark within a level. This would include, for example, adding silver nitrate to the already identified propanoic acid. Level $\mathbf{3}$ (5-6 marks) All stages are covered and each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 to identify all three compounds in a logical sequence with results and equations for all compounds stated. Covers 2 tests with matching observations, conclusions and equations Level 2 (3-4 marks) All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. Covers 2 compounds Isolated tests on named compounds - max LEVEL 2 Level $\mathbf{1}$ (1-2 marks) Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order.	Indicative Chemistry Content Identification of Acid 1a add named carbonate 1b effervescence/bubbles/ fizzing Identification of aldehyde 2a add Tollens reagent/ Fehlings A + B 2b warm/ water bath 2c silver mirror/brick red precipitate Identification of alcohol 3a add acidified potassium dichromate 3b heat 3c orange to green colour change	6	$\begin{gathered} 3.3 .5 .2 \\ 3.3 .9 .1 \\ 3.3 .8 \\ \text { AO3 } \end{gathered}$

[^0]
A Level AQA Chemistry

Chapter 5 - answers

Question	Answers	Extra information	Mark	AO Spec reference
06.1	lodine has more electrons So stronger van der Waals So more energy needed to separate the molecules	Do not accept break bonds unqualified	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3.1.3.7
06.2	The (forward) reaction / to the right is endothermic or takes in / absorbs heat The equilibrium shifts / moves left to right to oppose the increase in temperature	Allow converse M2 dependent on M1 and must involve temperature	1 1	$\begin{aligned} & \text { 3.1.6.1 } \\ & \text { AO3 } \end{aligned}$
06.3	No effect Equal number of gaseous moles both sides		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.6.1 } \\ \text { AO1 } \end{gathered}$
06.4	$\begin{aligned} & \Delta G=\Delta H-T \Delta S \\ & =-11-\left(300 \times 2.0 \times 10^{-2}\right) \\ & =-17 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Yes, it is feasible as less than 0		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .8 .2 \\ \text { AO2 } \\ \text { MS 2.2, 2.3, } 2.4 \end{gathered}$
06.5	Oxidising agent		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
06.6	$\mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$	Allow multiples	1	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO1 } \end{gathered}$
06.7	$\begin{aligned} & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.015) \\ & =1.82 \end{aligned}$	Must be 2 d.p.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.12.2 } \\ \text { AO1 } \\ \text { AO2 } \\ \text { MS 0.4, } 2.5 \end{gathered}$

A Level AQA Chemistry

Chapter 5-answers

Question	Answers	Extra information	Mark	AO Spec reference
06.8	Brown solution Purple fumes/solution $\begin{aligned} & 2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \\ & \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} \\ & 2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \end{aligned}$	Ignore state symbols	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .7 \\ 3.1 .2 .5 \\ 3.2 .3 .1 \end{gathered}$
07.1	No effect		1	$\begin{gathered} 3.1 .6 .1 \\ \text { AO1 } \end{gathered}$
07.2	Concentration of B would increase (Forward reaction is endothermic) equilibrium would shift to the left To oppose the change/to heat the solution		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .6 .1 \\ \text { AO1 } \end{gathered}$
07.3	Moles of $B=0.66 \times 0.1=0.066$ Change in $B=0.066-0.048=0.018$ Moles of $A=1.8 \times 10^{2}-\left(\frac{0.018}{2}\right)=9 \times 10^{-3}$ Moles C $=9 \times 10^{-3}$ Moles $\mathrm{D}=\left(9 \times 10^{-3}\right) \times 3+3.5 \times 10^{-2}=0.062$	Can be credited in correct working	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .2 .5 \\ \text { AO2 } \\ \text { MS 2.2, } 2.3 \end{gathered}$
07.4	$\begin{aligned} & K_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]^{3}}{[\mathrm{~A}][\mathrm{B}]^{2}} \\ & \frac{9 \times 10^{-3} \times(0.062)^{3}}{9 \times 10^{-3} \times\left(4.8 \times 10^{-2}\right)^{2}} \div\left(0.1^{4-3}\right) \\ & =1.03 \\ & \mathrm{~mol} \mathrm{dm} \end{aligned}$	Allow e.c.f. from 07.3 M3 for calculating concentrations	1 1 1 1 1	$\begin{gathered} 3.1 .6 .2 \\ \text { AO2 } \\ \text { MS 2.2, } 2.3 \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 5 - answers

Question	Answers	Extra information	Mark	AO Spec reference
08.1	7/VII/seven		1	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
08.2	$16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$	Allow multiples 1 mark for reversing chlorine half equation	2	$\begin{aligned} & 3.1 .7 \\ & \text { AO1 } \end{aligned}$
08.3	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$		1	$\begin{gathered} 3.1 .2 .5 \\ \text { AO1 } \end{gathered}$
08.4	Chlorine		1	$\begin{aligned} & \text { 3.1.7 } \\ & \text { AO1 } \end{aligned}$
08.5	Gains electrons/removes electrons	Allow specific references to this example to illustrate and half equation	1	$\begin{aligned} & \text { 3.1.7 } \\ & \text { AO1 } \end{aligned}$
08.6	Bromine had more electrons So stronger van der Waals forces More energy needed to overcome the forces	Ignore break bonds unless specifically van der Waals bonds	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.3.7 } \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 5 - answers

Skills box answers

Temp $/{ }^{\circ} \mathrm{C}$	Time $/ \mathrm{s}$	Temp $/ \mathrm{K}$	T^{-1} / K^{-1}	In $\left(\frac{1}{\text { time }}\right)$
20	88	293	3.41×10^{-3}	-4.48
30	52	303	3.30×10^{-3}	-3.95
40	32	313	3.19×10^{-3}	-3.47
50	20	323	3.10×10^{-3}	-3.00
60	13	333	3.00×10^{-3}	-2.56

3. Gradient $=-4640 \mathrm{~K}$ allow -4180 to -5100
gradient $=-\frac{E_{a}}{R} \therefore E_{a}=-R \times$ gradient $=-8.31 \times 4640=38560 \mathrm{~J} \mathrm{~mol}^{-1}$
$\therefore E_{\mathrm{a}}=38.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(If $\pm 5 \%$ is allowed in the gradient, then E_{a} is between 36.6 to $40.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)
© Oxford University Press www.oxfordsecondary.com

[^0]: © Oxford University Press www.oxfordsecondary.com

