A Level AQA Chemistry

Chapter 4 -answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	16.00 only	Reject 16	1	$\begin{gathered} \text { AO1 } \\ \text { MS1.1 } \end{gathered}$
01.2	Enthalpy change when 1 mole of substance Is completely burnt in oxygen Products and reactants in standard states under standard conditions		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .1 \\ \text { AO1 } \end{gathered}$
01.3	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{l})+41 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	Allow any accurate structure of propan-1-ol Must include state symbols	1	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO1 } \end{gathered}$
01.4	$\begin{aligned} & Q=m c \Delta T \\ & Q=200 \times 4.18 \times 16=13376 \mathrm{~J} \\ & \text { Moles }=\frac{\text { mass }}{M_{\mathrm{r}}}=\frac{1.17}{60}=0.0195 \\ & \Delta_{c} \mathrm{H}=\frac{13376}{0.0195}=-685949 \mathrm{~J} \mathrm{~mol}^{-1} \\ & -686 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Or equivalent Must be 3 s.f. must have minus sign	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 \cdot 4.2 \\ \text { MSO.0,1.1 } \\ \text { AO2 } \end{gathered}$
01.5	Heat lost to surroundings Incomplete combustion of fuel Some fuel evaporates between end of experiment and measurement of mass	Allow not enough oxygen	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.2 } \\ \text { AO3 } \end{gathered}$
02.1	Suitable scale Labels on both axis (time $=x$, temperature $=y$) Correct units All points plotted accurately Both lines extrapolated to $5^{\text {th }}$ minute Instantaneous temperature calculated (expected to be $13.6^{\circ} \mathrm{C}$)	Allow splitting of y axis Points must cover over half the page (if scale can be sensibly doubled lose M2 Allow 2 errors $\pm 1 \mathrm{~mm}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .2 \\ \text { AO3 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 4 -answers

Question	Answers	Extra information	Mark	AO Spec reference
02.2	With $\mathrm{T}=13.6$ $\begin{aligned} & Q=m c \Delta \mathrm{~T} \\ & Q=50 \times 4.18 \times 13.6=2842(.4) \\ & \text { Moles }=C \times V=\frac{2 \times 25}{1000}=0.05 \\ & \Delta_{c} H=\frac{2842}{0.05}=-56840 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ $-56.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ must have minus		1 1 1 1 1	$\begin{gathered} 3.1 \cdot 4.2 \\ \text { MS0.0,1.1 } \\ \text { AO2 } \end{gathered}$
02.3	Same value as 02.2 Still producing water so enthalpy per mole should be the same		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .1 \\ \text { AO3 } \end{gathered}$
03.1	is	Only accept r.h.s. as answer	1	$\begin{gathered} \text { 3.3.1.1 } \\ \text { AO1 } \end{gathered}$
03.2	Chain		1	$\begin{gathered} \text { 3.3.1.3 } \\ \text { AO1 } \end{gathered}$
03.3	$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+6 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}$		1	$\begin{gathered} 3.1 .2 .5 \\ \text { AO3 } \end{gathered}$
03.4	The enthalpy change is independent of the route taken		1	$\begin{gathered} \text { 3.1.4.3 } \\ \text { AO1 } \end{gathered}$
03.5	$\begin{aligned} & \Delta_{r} \mathrm{H}=-2878+2869= \\ & -9 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Allow correct cycle 1 mark for recall of productsreactants or cycle	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.3 } \\ \text { AO2 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 4 -answers

Question	Answers	Extra information	Mark	AO Spec reference
03.6	$+9 \mathrm{~kJ} \mathrm{~mol}^{-1}$	Allow their answer for 3.5 with opposite sign	1	$\begin{gathered} \text { 3.1.4.3 } \\ \text { AO3 } \end{gathered}$
03.7	High activation energy		1	$\begin{gathered} 3.1 .5 .1 \\ \text { AO3 } \end{gathered}$
04.1	The mean/average energy needed To break 1 mole of a covalent bonds From a range of compounds		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .4 \\ \text { AO1 } \end{gathered}$
04.2			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 \cdot 4.4 \\ \text { MS1.2 } \\ \text { AO2 } \end{gathered}$
04.3	Bond enthalpies are an approximate/average Over a range of compounds		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.4 } \\ \text { MS1.2 } \\ \text { AO3 } \end{gathered}$
04.4	$\begin{aligned} & (2 \times-715)=(6 \times 413)+(2 \times 358)+(2 \times 467)+3 x-(4 \times 799)-(8 \times 467) \\ & -1430=-2804+3 x \\ & 1374=3 x \\ & \frac{1374}{3}=x=458 \mathrm{kJmol}^{-1} \end{aligned}$	Allow correct cycle 1 mark for recall of productsreactants or cycle Correct answer score $\mathbf{3}$ marks $3^{\text {rd }}$ mark e.c.f. any number/3	1 1 1	$\begin{gathered} 3.1 .4 .4 \\ 3.1 .4 .3 \\ \text { MS1.2 } \\ \text { AO2 } \end{gathered}$
04.5	$\begin{aligned} & -19=3 X--1155 \\ & -1174=3 X \\ & \frac{-1174}{3}=X=-391.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Credit only $\mathbf{2}$ marks for (+)391.3 Correct answer score 3 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .3 \\ 3.1 .4 .1 \\ \text { AO2 } \\ \text { MS1.1 } \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 4 -answers

Question	Answers	Extra information	Mark	AO Spec reference
05.1	$2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$		1	$\begin{gathered} \text { 3.1.4.1 } \\ \text { AOO } \end{gathered}$
05.2	1,2-Difluoroethane	only	1	$\begin{gathered} \text { 3.3.1.1 } \\ \text { AO1 } \end{gathered}$
05.3	It is an element		1	$\begin{gathered} \text { 3.1.4.1 } \\ \text { AO1 } \end{gathered}$
05.4	$\begin{aligned} & \Delta_{r} \mathrm{H}=\sum \text { Products }-\sum \text { Reactants } \\ & -1134=X+(2 \times-273)-(-84) \\ & -1134=X-462 \\ & X=-672 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Credit only $\mathbf{2}$ marks for (+)672 Correct answer score 3 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .3 \\ 3.1 .4 .1 \\ \text { AO2 } \\ \text { MS1.1 } \end{gathered}$
06.1	$\begin{aligned} & x \text {-axis }=\text { energy } \\ & y \text {-axis }=\text { No of particles/ proportion of particles/ mole fraction } \end{aligned}$	Allow speed	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.5.2 } \\ \text { AO1 } \end{gathered}$
06.2	Vertical line from x-axis to peak		1	$\begin{gathered} 3.1 .5 .2 \\ \text { AO1 } \end{gathered}$
06.3	The new curve starts at the origin and should begin to separate from the original almost immediately the axis peak should be higher and to the right		1	$\begin{gathered} 3.1 .5 .2 \\ 3.1 .5 .3 \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 4 - answers

Question	Answers	Extra information	Mark	AO Spec reference
06.4	A decrease in the number / proportion of molecules with $E \geq E_{\mathrm{a}}$ Fewer effective / productive / successful collisions in a given time / given period	OR fewer molecules have $E \geq E_{\mathrm{a}}$ OR fewer molecules have sufficient / enough energy to react / decompose OR fewer frequent effective / productive / successful collisions OR lower rate of effective / productive / successful collisions	1	3.1.5.2. 3.1.5.3
06.5	No effect Shape of graph is the same no matter what pressure, if temperature is the same	OR only temperature changes the shape	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .5 .4 \\ \text { AO2 } \end{gathered}$
07.1	$\begin{aligned} & -136=(612+436+4 x)-(2 x+348) \\ & -136=700-2 x \\ & \frac{-836}{-2}=x=418 \mathrm{kJmol}^{-1} \end{aligned}$	Allow correct cycle 1 mark for recall of productsreactants or cycle Correct answer score 3 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 \cdot 4.4 \\ 3.1 .4 .3 \\ \text { MS1.2 } \\ \text { AO2 } \end{gathered}$
07.2	$\begin{aligned} & \Delta \mathrm{H}=(-1387.4+-286)-(-1560.7) \\ & \Delta \mathrm{H}=-112.7 \mathrm{kJmol}^{-1} \end{aligned}$ Bond enthalpies are approximations taken from a range of compounds	Allow correct cycle 1 mark for recall of productsreactants or cycle Correct answer score 2 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.1 .4 .4 \\ 3.1 .4 .3 \\ \text { MS1.2 } \\ \text { AO2 } \end{gathered}$
07.3	It is an element		1	$\begin{gathered} \text { 3.1.4.1 } \\ \text { AOO } \end{gathered}$

A Level AQA Chemistry

Chapter 4 -answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Giant covalent (macromolecule) one covalent bond in hydrogen Lots of energy needed to break the bonds		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.3.4 } \\ \text { AOO } \end{gathered}$
07.5	More moles of water can be formed More bonds formed	Ignores breaks more bonds	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.4 } \\ \text { AOO } \end{gathered}$
08.1	$\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \frac{1}{3} \mathrm{~N}_{2}+1 \frac{1}{3} \mathrm{NH}_{3}$		1	$\begin{gathered} \text { 3.1.2.5 } \\ \text { AO1 } \end{gathered}$
08.2	$\begin{aligned} \Delta H & =\text { reactants }- \text { products } \\ \Delta H & =\{(4 \times 388)+163\}-\{(4 \times 388)+944 / 3\} \\ & =-152 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	Allow e.c.f. from 08.1 Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer scores 2 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.4.4 } \\ \text { MS1.2 } \\ \text { AO2 } \end{gathered}$
08.3	$\begin{aligned} \Delta H & =\Sigma \text { products }-\sum \text { reactants } \\ & =(4 \times-286)-\{96+(2 \times-187)\} \\ & =-866 \mathrm{kJmol}^{-1} \end{aligned}$	Allow e.c.f. from 08.1 Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer score 3 marks	1 1 1	$\begin{aligned} & 3.1 .4 .1 \\ & \text { 3.1.4.3 } \\ & \text { MS1.2 } \\ & \text { AO2 } \end{aligned}$

A Level AQA Chemistry

Chapter 4 - answers

Question	Answers	Extra information	Mark	AO Spec reference
08.4	$\begin{aligned} & \text { Moles }=\frac{1.45}{32}=0.0453 \\ & q=866 \times 0.0453=39.24 \mathrm{~kJ}=39240 \mathrm{~J} \\ & \Delta T=\frac{q}{m c}=\frac{39240}{(500 \times 4.18)}=18.8 \\ & 298+18.8=316.8=317 \mathrm{~K} \end{aligned}$	Answer must be 3 s.f. Allow $43.8^{\circ} \mathrm{C}$	1 1 1 1	$\begin{gathered} 3.1 .4 .2 \\ \text { MS 0.0, 1.1 } \\ \text { AO2 } \end{gathered}$
08.5	$\begin{aligned} & P V=n R T \\ & n=\frac{P V}{R T}=\frac{100000 \times 4.6}{8.31 \times 298}=185.755 \mathrm{moles} \\ & \text { Mass }=32 \times 185.755=5944 \mathrm{~g} \\ & 5.9 \mathrm{~kg} \end{aligned}$	Must be 2 s.f.	1 1 1 1	$\begin{gathered} 3.1 .2 .3 \\ \text { MS0.0, 2.2, } \\ 2.3,2.4 \\ \text { AO2 } \end{gathered}$

Skills box answers:

1. $\Delta T=69.5-20.5=49.0^{\circ} \mathrm{C} \%$ error $=\frac{2 \times 0.5}{49.0} \times 100=2 \%$
2. With $150 \mathrm{~cm}^{3}$ cylinder: $\%$ error $=\frac{1}{150} \times 100=0.67 \%$

With $25 \mathrm{~cm}^{3}$ cylinder 6 times: $\%$ error $=6 \times \frac{0.2}{25} \times 100=4.8 \%$
Therefore, using the $150 \mathrm{~cm}^{3}$ cylinder once is better than using the $25 \mathrm{~cm}^{3}$ six times.
3. The measured temperature change would be larger as less heat/energy would be lost.

Therefore, the calculated value for $\Delta_{c} \mathrm{H}$ would be more exothermic
4. The temperature would reach $100^{\circ} \mathrm{C}$ and not get any higher as the water would be boiling/evaporating/changing state. So the measured value of ΔT would be lower. Therefore, the measured value of $\Delta_{c} \mathrm{H}$ would be less exothermic.

