

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	16.00 only	Reject 16	1	AO1 MS1.1
01.2	Enthalpy change when <u>1 mole</u> of substance Is <u>completely</u> burnt in oxygen Products and reactants in <u>standard states under standard conditions</u>		1 1 1	3.1.4.1 AO1
01.3	$C_3H_8O (l) + 4\frac{1}{2}O_2 (g) \rightarrow 3CO_2 (g) + 4H_2O (l)$	Allow any accurate structure of propan-1-ol Must include state symbols	1	3.1.2.5 AO1
01.4	$Q = mc\Delta T$ $Q = 200 \times 4.18 \times 16 = 13376 \text{ J}$ $Moles = \frac{mass}{M_r} = \frac{1.17}{60} = 0.0195$	Or equivalent	1 1	3.1.4.2 MS0.0,1.1 AO2
	$\Delta_c H = \frac{13376}{0.0195} = -685 949 \text{ J mol}^{-1}$ -686 kJ mol^{-1}	Must be 3 s.f. must have minus sign	1	
01.5	Heat lost to surroundings Incomplete combustion of fuel Some fuel evaporates between end of experiment and measurement of mass	Allow not enough oxygen	1 1 1	3.1.4.2 AO3
02.1	Suitable scale Labels on both axis (time = x , temperature = y) Correct units All points plotted accurately Both lines extrapolated to 5^{th} minute Instantaneous temperature calculated (expected to be 13.6°C)	Allow splitting of y axis Points must cover over half the page (if scale can be sensibly doubled lose M2 Allow 2 errors ±1 mm	1 1 1 1 1	3.1.4.2 AO3

[©] Oxford University Press www.oxfordsecondary.com

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
02.2	With T = 13.6		1	3.1.4.2
	$Q = mc\Delta T$		1	MS0.0,1.1 AO2
	$Q = 50 \times 4.18 \times 13.6 = 2842(.4)$			7.02
	Moles = $C \times V = \frac{2 \times 25}{1000} = 0.05$		1	
	$\Delta_c H = \frac{2842}{0.05} = -56840 \text{ J mol}^{-1}$		1	
	−56.8 kJ mol ⁻¹ must have minus		1	
02.3	Same value as 02.2 Still producing water so enthalpy per mole should be the same		1 1	3.1.4.1 AO3
03.1	H H—C—H H H H—C—C—C—H is H H H	Only accept r.h.s. as answer	1	3.3.1.1 AO1
03.2	Chain		1	3.3.1.3 AO1
03.3	$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$		1	3.1.2.5 AO3
03.4	The enthalpy change is independent of the route taken		1	3.1.4.3 AO1
03.5	$\Delta_r H = -2878 + 2869 =$ -9 kJ mol^{-1}	Allow correct cycle 1 mark for recall of products- reactants or cycle	1 1	3.1.4.3 AO2

 $[\]hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
03.6	+9 kJ mol ⁻¹	Allow their answer for 3.5 with opposite sign	1	3.1.4.3 AO3
03.7	High activation energy		1	3.1.5.1 AO3
04.1	The <u>mean/average</u> energy needed To break <u>1 mole of a covalent</u> bonds From a <u>range</u> of compounds		1 1 1	3.1.4.4 AO1
04.2	$\Delta_r H = \Sigma reactants - \Sigma products$ = 1072 + (2 × 432) - (3 × 413) - 358 - 467 = -128 kJ mol ⁻¹		1 1 1	3.1.4.4 MS1.2 AO2
04.3	Bond enthalpies are an approximate/average Over a range of compounds		1 1	3.1.4.4 MS1.2 AO3
04.4	$(2 \times -715) = (6 \times 413) + (2 \times 358) + (2 \times 467) + 3x - (4 \times 799) - (8 \times 467)$ -1430 = -2804 + 3x 1374 = 3x $\frac{1374}{3} = x = 458 \text{ kJmol}^{-1}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer score 3 marks 3 rd mark e.c.f. any number/3	1 1 1	3.1.4.4 3.1.4.3 MS1.2 AO2
04.5	$-19 = 3X1155$ $-1174 = 3X$ $\frac{-1174}{3} = X = -391.3 \text{ kJ mol}^{-1}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Credit only 2 marks for (+)391.3 Correct answer score 3 marks	1 1 1	3.1.4.3 3.1.4.1 AO2 MS1.1

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
05.1	$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$		1	3.1.4.1 AO1
05.2	1,2-Difluoroethane	only	1	3.3.1.1 AO1
05.3	It is an element		1	3.1.4.1 AO1
05.4	$\Delta_r H = \Sigma Products - \Sigma Reactants$ $-1134 = X + (2 \times -273) - (-84)$ $-1134 = X -462$ $X = -672 \text{ kJ mol}^{-1}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Credit only 2 marks for (+)672 Correct answer score 3 marks	1 1 1	3.1.4.3 3.1.4.1 AO2 MS1.1
06.1	x-axis = energy y-axis = No of particles/ proportion of particles/ mole fraction	Allow speed	1 1	3.1.5.2 AO1
06.2	Vertical line from x -axis to peak		1	3.1.5.2 AO1
06.3	The new curve starts at the origin and should begin to separate from the original almost immediately the axis peak should be higher and to the right		1	3.1.5.2. 3.1.5.3 AO1

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
06.4	A decrease in the number / proportion of molecules with $E \geq E_a$ Fewer effective / productive / successful collisions in a given time / given period	OR fewer molecules have $E \ge E_{\rm a}$ OR fewer molecules have sufficient / enough energy to react / decompose OR fewer frequent effective / productive / successful collisions OR lower rate of effective / productive / successful collisions	1	3.1.5.2. 3.1.5.3
06.5	No effect Shape of graph is the same no matter what pressure, if temperature is the same	OR only temperature changes the shape	1 1	3.1.5.4 AO2
07.1	$-136 = (612 + 436 + 4x) - (2x + 348)$ $-136 = 700 - 2x$ $\frac{-836}{-2} = x = 418 \text{ kJmol}^{-1}$	Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer score 3 marks	1 1 1	3.1.4.4 3.1.4.3 MS1.2 AO2
07.2	$\Delta H = (-1387.4 + -286) - (-1560.7)$ $\Delta H = -112.7 \text{ kJmol}^{-1}$ Bond enthalpies are approximations taken from a range of compounds	Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer score 2 marks	1 1	3.1.4.4 3.1.4.3 MS1.2 AO2
07.3	It is an element		1	3.1.4.1 AO1

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
07.4	Giant covalent (macromolecule) one covalent bond in hydrogen Lots of energy needed to break the bonds		1 1 1	3.1.3.4 AO1
07.5	More moles of water can be formed More bonds formed	Ignores breaks more bonds	1 1	3.1.4.4 AO3
08.1	$N_2H_4 \to \frac{1}{3}N_2 + 1\frac{1}{3}NH_3$		1	3.1.2.5 AO1
08.2	ΔH = reactants – products ΔH = {(4 × 388) + 163} – {(4 × 388) + 944/3} = -152 kJ mol ⁻¹	Allow e.c.f. from 08.1 Allow correct cycle 1 mark for recall of products- reactants or cycle Correct answer scores 2 marks	1 1 1	3.1.4.4 MS1.2 AO2
08.3	$\Delta H = \Sigma \text{products} - \Sigma \text{reactants}$ $= (4 \times -286) - \{96 + (2 \times -187)\}$	Allow e.c.f. from 08.1 Allow correct cycle 1 mark for recall of products- reactants or cycle	1	3.1.4.1 3.1.4.3 MS1.2 AO2
	= −866 kJmol ⁻¹	Correct answer score 3 marks	1	

Chapter 4 – answers

Question	Answers	Extra information	Mark	AO Spec reference
08.4	Moles = $\frac{1.45}{32}$ = 0.0453 $q = 866 \times 0.0453 = 39.24 \text{ kJ} = 39240 \text{ J}$	Answer must be 3 s.f. Allow 43.8°C	1 1	3.1.4.2 MS 0.0, 1.1 AO2
	$\Delta T = \frac{q}{mc} = \frac{39240}{(500 \times 4.18)} = 18.8$ $298 + 18.8 = 316.8 = 317 \text{ K}$		1	
08.5	$PV = nRT$ $n = \frac{PV}{RT} = \frac{1000000 \times 4.6}{8.31 \times 298} = 185.755 \text{ moles}$		1	3.1.2.3 MS0.0, 2.2,
	$RT = 8.31 \times 298$ Mass = 32 × 185.755 = 5944 g		1	2.3, 2.4 AO2
	5.9 kg	Must be 2 s.f.	1	

Skills box answers:

1.
$$\Delta T = 69.5 - 20.5 = 49.0$$
°C % error = $\frac{2 \times 0.5}{49.0} \times 100 = 2$ %

2. With 150 cm³ cylinder: % error = $\frac{1}{150} \times 100 = 0.67\%$

With 25 cm³ cylinder 6 times: % error = $6 \times \frac{0.2}{25} \times 100 = 4.8\%$

Therefore, using the 150 cm³ cylinder once is better than using the 25 cm³ six times.

3. The measured temperature change would be larger as less heat/energy would be lost.

Therefore, the calculated value for Δ H would be more exothermic

4. The temperature would reach 100°C and not get any higher as the water would be boiling/evaporating/changing state. So the measured value of ΔT would be lower. Therefore, the measured value of ΔT would be less exothermic.