

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Strong attraction between oppositely charged ions Large amount of energy needed to overcome attraction	Allow named charges and ions	1 1	AO1 3.1.3.1 3.1.3.4
01.2	Ions can bond to water/ can be attracted to polar bonds/H bonds of water		1	AO1 3.1.3.1 3.1.3.4
01.3	$K(s) + H_2O(l) \rightarrow K^+(aq) + OH^-(aq) + \frac{1}{2}H_2(g)$	Accept multiples Must include state symbols	1 1	AO1 3.1.2.5
01.4	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		1	AO1 3.1.1.3
01.5	This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking.	Indicative Chemistry Content Stage 1: – K 1a K has metallic bonding 1b there is attraction/ bonding between the positive nucleus/ ion and the <u>delocalised</u> electrons in K 1c K has a giant/lattice structure	6	AO3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4
	 Level 3 (5–6 marks) All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2, stage 3, and then stage 4. Coherent communication requires that there is a comparison between the types of bonding and that the bonding is correct for each substance. 	Stage 2: – KBr 2a Ionic bonding in KBr 2b There is attraction/ bonding between the + and – ions in KBr 2c KBr has a giant/lattice structure		

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
	 Level 2 (3-4 marks) All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4. 	Stage 3: – Br ₂ 3a Covalent (molecular) bonding 3b shared pair of electrons 3c van der Waals forces of attraction		
	Level 1 (1–2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.	Stage 4: – comparison of bonding 3a The ionic bonds are stronger (or wtte) than the metallic bonds and/or vdw forces		
	Answer shows some progression between two stages	3b there is stronger attraction (or wtte) between the + and – ions in KBr than in K or Br ₂ 3c so more energy is needed to overcome the forces increasing the melting point		
02.1	Attraction between positive metals ions 'sea' of delocalised electrons		1 1	3.1.3.3 AO1
02.2	Rows of ions can slide over each other		1	3.1.3.3 AO1
02.3	Fe ₂ O ₃		1	3.1.2.4 AO1
02.4	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵		1	AO1 3.1.1.3
02.5	Iron has a sea of delocalised electrons which can move to carry the charge Iron oxide has ions which cannot move (in solid state) so charge can't be carried	OWTTE	1 1 1 1	3.1.3.4 AO1

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.1	Covalent bonds Shared pair of electrons		1 1	3.1.3.1 AO1
03.2	Ethanol can form hydrogen bonds		1	3.1.3.7 AO3
	Propane has van der Waals		1	
	H bonds require more energy to break		1	
03.3	$H \xrightarrow{H}_{H} \xrightarrow{\delta}_{O} \xrightarrow{H}_{O} \xrightarrow{H}_{A}^{A+}$ $hydrogen \ bond \ \delta_{O} \xrightarrow{H}$ 1st mark showing correct structures of both molecules $2^{nd} \ mark \ \delta+ \ and \ \delta- \ charges \ on \ H \ and \ O \ respectively$ $3^{rd} \ mark \ H \ bond \ (dotted \ or \ dashed \ line) \ from \ lone \ pair \ on \ O \ to \ H$		3	3.1.3.7 AO3
03.4	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$		1	3.1.2.5 AO2
03.5	$\frac{25}{46} = 0.543 \text{ mol}$	Allow e.c.f.	1	3.1.2.3 AO2
	$V = \frac{nRT}{P} \text{OR} \frac{(0.54 \times 5 \times 8.31 \times 2000)}{101 \times 10^3} = V$ $= 0.444 \text{m}^3$	Mark 2 for recall of formula mark 3 for moles of gas = mol ethanol × 5 Final mark for correct rounding of	1	MS0.0, 2.2, 2.3, 2.4
		their answer		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question		Answers	Extra information	Mark	AO Spec reference
04.1		+ + + electron + + + + +	Mark 1 Must be ions. Either by label or by showing + charge Mark 2 Must be 9 electrons (or equal to number of atoms	1	3.1.3.3 AO1
04.2	<u>Ions</u> can slide	e past each other	Penalise use of atoms Allow rows	1	3.1.3.4 AO1
04.3	5s ¹ 4d ¹⁰		Can be in either order	1	3.1.1.3 AO3
04.4	Marks awar communica should appl	ded for this answer will be determined by the quality of written tion as well as the standard of the scientific response. Examiners y a 'best-fit' approach to the marking.		6	3.2.3.1 AO3
	Additional example, ac	tests limits to lower mark within a level. This would include, for Iding silver nitrate to the already identified sodium carbonate.			
	Use of hydro level as this	ochloric acid with silver nitrate also limits to lower mark within a would not be a logical sequence/method that would work.			
		All stages are covered and each stage is generally correct and virtually complete.			
	Level 3 5–6 marks	Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 to identify all three compounds in a logical sequence with results and equations for all compounds stated.			
		Covers 2 tests with matching observations, conclusions and equations			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Answers	Extra information	Mark	AO Spec reference
	Level 2All stages are covered but stage(s) may be incomplete or may contain inaccuraciesIndicative Chem0R two stages are covered and are generally correct and virtually complete.Stage 1: Suggest 1a Add named ac 	Indicative Chemistry Content Stage 1: Suggested tests 1a Add named acid to all 3 (not HCl) 1b Add AgNO ₃ 1c addition of dilute NH ₃ Ignore additional test for CO ₂ produced			
	Level 1 1–2 marks	Isolated tests on named compounds – max LEVEL 2 Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order.	Stage 2: Expected observations – conclusions 2a Na ₂ CO ₃ will fizz with acid 2b NaCl gives white ppt with AgNO ₃ which dissolves in NH ₃ 2c NaBr give a cream ppt with AgNO ₃ that does not dissolve in dilute ammonia Additional incorrect observations loses mark		
			Stage 3: Equations – state symbols must match method $3a Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + CO_2 + H_2O \dots$ or ionic $3b AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ or ionic OR $AgNO_3 + NaBr \rightarrow AgBr + NaNO_3$ or ionic 3c correct state symbols		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.1	 This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking. Level 3 (5–6 marks) All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2, stage 3 and then stage 4. 	Indicative Chemistry Content Contradictions (eg molecules, IMFs, covalent bonding,) negate statements. Stage 1: – Water 1a Has hydrogen bonding 1b Between H atom and long pair	6	3.1.3.7 AO3
	Coherent communication requires that there is a comparison between the types of bonding and that the bonding is correct for each substance. Level 2 (3-4 marks) All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4.	on oxygen 1c Can form 2 H bonds Stage 2: - Ammonia 2a Has hydrogen bonding 2b between H atom and lone pair on nitrogen 2c can form 1 H bond		
	Level 1 (1–2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer shows some progression between two stages	Stage 3: - Methane 3a van der Waals forces of attraction 3b caused by temporary dipoles Stage 4: - Comparison of bonding 3a The hydrogen bonds are stronger (or wtte) than the vdw forces 3b Water makes more H bonds than ammonia 3c so more energy is needed to overcome the forces increasing the boiling point		

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.2	Ammonia can form hydrogen bonds with $\rm H_2O$ Methane is not polar / cannot form hydrogen bonds		1 1	AO1 3.1.3.4 3.1.3.6
05.3	Ammonia: 3 bonding pairs + 1 lone pair Pyramidal and 107° Diagram Boron trihydride: 3 bonding pairs + 0 lone pairs Trigonal planar and 120° Diagram	Diagram for ammonia must include lone and dash/wedge bonds Diagram for BH ₃ does not need lp or wedge/dash bonds	1 1 1 1 1 1	AO3 AO1 3.1.3.5
05.4	Dative (covalent) bond Both electrons come from nitrogen /same atom	Allow both e⁻ come from ammonia	1 1	3.1.3.2 AO1
05.5	Moles ammonium chloride = $\frac{25000}{53.5}$ = 467.3 (467.2897) Mass NH ₃ = 467.3 × 17 = 7943.9g (7944.1) = 7.94 kg	Allow e.c.f., give full credit to any method that produces the correct answer		3.1.2.5 MS0.4 AO2
05.6	Moles of HCl = 467.3 $V = \frac{\text{mol}}{\text{conc}} = \frac{467.3}{2.5} = 186.9 \text{dm}^3$	For 500 moles $\frac{500}{25} = 20 \text{dm}^3$	1 1	3.1.2.5 MS0.4 AO2

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.7	Ammonium chloride is a (<u>giant) ionic (lattice) / ionically bonded</u> Strong attraction between <u>oppositely</u> charged ions	Allow named ions	1 1	3.1.3.4 3.1.3.7
	Ammonia is <u>simple molecular</u> Hydrogen bonds between molecules Ionic bonds are stronger so more energy needed to separate ions or	Ignore 'covalent ' as the intermolecular forces	1 1 1	AO3
	reserves argument	Ignore van der waals/London etc.		
06.1	Water has hydrogen bonds Dihydrogen sulfide only has van der Waals forces H bonds are much stronger than van der Waals forces	Allow dipole-dipole interaction/ forces	1 1 1	3.1.3.6 3.1.3.7 AO3
06.2	Both have van der Waals forces only Dihydrogen selenide has more electrons so stronger van der Waals	Allow reverse argument	1 1	3.1.3.7 AO3
06.3	As the water freezes the molecules a held in an expanded structure	Allow any reference to larger spaces between molecules caused by hydrogen bonds	1	AO1
06.4	2 bonding pairs and 2 lone pairs Correct V shape shown labelled bent or non-linear Bond angle of 104.5°		1 1 1	A01
06.5	Giant covalent	Allow covalent macromolecule	1	3.1.3.5 AO1
06.6	Diamond has 4 covalent bonds between carbon atoms Graphite has layers which can slide past each other		1 1	3.1.3.5 AO1
06.7	Graphite has <u>delocalised electrons</u> Which can move/flow to carry charge/current		1 1	3.1.3.5 AO1

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.8	Both are giant covalent (macromolecules) Melting needs the strong covalent bonds to be broken	OWTTE	1 1	3.1.3.5 AO1
06.9	Diamond (4 bonding pairs) Tetrahedral 109.5° Diagram much use wedge/dash bonds Graphite (3 bonding pairs + 0 lone pairs) Trigonal planar 120° Diagram	Diagrams do not have to be to scale as long as they are able to communicate the basic shape Graphite diagram must show hexagonal structure but does not need to show layers (as the Q refers to repeated structure of carbon atoms)	1 1 1 1 1	AO3 AO1 3.1.3.5
07.1	Decreases Increase in shielding		1 1	3.1.1.3 AO1
07.2	Iodine has more electrons Stronger van der Waals forces		1 1	3.1.3.7 AO1
07.3	Fluoride has a full outer shell No space for more electrons so no further reactions		1 1	3.1.1.1 AO1
07.4	$Xe(g) + 2F_2(g) \rightarrow XeF_4(s)$		1	3.1.2.5 AO2

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.5	XeF₄	Diagrams do not have to be to		AO3
	(4 bonding pairs, 2 lone pairs)	scale as long as they are able to		A01
	Square planar	communicate the basic shape	1	3.1.3.5
	90	Diagrams must snow lone	1	
	Diagram	appropriate to indicate shape	Ţ	
	KrF ₂			
	(2 bonding pairs 3 lone pairs)		1	
	linear		1	
	180 Diagram		1	
	Diagram		-	
07.6	Van der Waals / permanent dipole-permanent dipole		1	3.1.3.5 AO3
07.7	$M_{\rm r} {\rm XeF}_2 = 131.3 + 19 + 19 = 169.3$		1	3.1.2.5
	4500			AO2
	169.3		1	
	= 26.58 moles		1	
	- 20.50 moles		1	
08.1	Al ion is a 3+ ion		1	3.1.3.1
	$O_{\rm W}$ gon is a 2-ion		1	AU3
	Small highly charged ions form strong bonds	Allow hard to break/separate	1	
			-	
08.2	Radii decreases		1	3.1.1.3
	Same shielding		1	3.2.1.2 ΔΩ2
1	Sume smetcing		-	102

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
08.3	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	Allow Al ₂ Cl ₆ Allow multiples	1	3.1.2.5 3.2.1.2 AO1
08.4	Dative (Covalent bond) formed with both electrons from one atom	Allow co-ordinate bond	1 1	3.1.3.2 AO1
08.5	Aluminium chloride is molecular covalent Weak forces of van der Waals between molecules Aluminium oxide is ionic Strong electrostatic forces between oppositely charged ions More energy needed to separate the ions		1 1 1 1 1	3.1.3.4 3.2.1.2 AO1 AO3
08.6	It is a covalent molecules No free electrons/ions to carry charge/flow		1 1	3.1.3.4 3.2.1.2 AO1

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Skills Boxes answers

		AlCl ₄ -	PCl ₄ ⁺	PCl ₆ ⁻	IF_5	$\mathrm{NH_4^+}$	OF ₂	IF ₃	NH_2^-	SO4 ²⁻
Step 1	central atom	3	5	5	7	5	6	7	5	6
Step 2	outer atoms	4 imes 1	4 imes 1	6 imes 1	5 imes 1	4 imes 1	2×1	3×1	2×1	4×2
Step 3	charge?	+1	-1	+1	0	-1	0	0	+1	+2
Stop 4	total e⁻	8	8	12	12	8	8	10	8	16
Step 4	e⁻ pairs	4	4	6	6	4	4	5	4	8
Step 5	double/ triple bond	0	0	0	0	0	0	0	0	4 (S=O)
Step 6	lone pairs	0	0	0	1	0	2	2	2	0
Answer	a) drawing	0	0		o jõo		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	b) shape	tetrahedral	tetrahedral	octahedral	square pyramidal	tetrahedral	non-linear	trigonal planar	non-linear	tetrahedral
	c) angle / °	109.5	109.5	90	82	109.5	104.5	120	104.5	109.5

۲

© Oxford University Press www.oxfordsecondary.com