

Question			Answers		Extra information	Mark	AO Spec reference
01.1	A base is a proton acceptor Amines have a lone-pair of electrons on the nitrogen that can accept a proton			Accept H ⁺ for proton	1 1	AO1 3.3.11.2 3.1.12.1	
01.2	On compound A, the lone pair electrons on the nitrogen can be delocalised onto the ring Reducing the availability of the lone-pair electrons (on the nitrogen) making it harder to accept a proton On compound B, the methyl groups push electrons towards the nitrogen Increasing the availability of the lone-pair electrons (on the nitrogen) making it easier to accept a proton			Accept reducing the electron density on the nitrogen er Accept increasing the electron density on the nitrogen	1 1 1 1	AO1 3.1.12.1	
01.3	A – 15s B – 40s The more basic B will be retained for longer on the weakly-acidic stationary phase			Need both times for mark	1	AO1 AO2 3.3.11.2 3.3.16	
01.4	Total area of peaks = $A(\frac{1}{2} \times 10 \times 8) + B(\frac{1}{2} \times 10 \times 3) + = 55$ A - 72.7% B - 27.3%			Give 2 marks if these answers are given	5 1 1	AO3 3.3.16	
02.1		Carbon	Hydrogen	Oxygen	This is such a well-practised type of question that 1 mark	1	AO1 3.1.2.4
	No. of moles	58.88/12 = 4.91	9.80/1 = 9.80	31.37/16 = 1.96	only is awarded for this part.		3.3.6.2
	Relative number of atoms	4.91/1.96 = 2.50 5	9.80/1.96 = 5 10	1.96/1.96 = 1 2			
	The empirical formula = $C_5H_{10}O_2$. From molecular ion peak; M_r = 102 = empirical formula mass Therefore, molecular formula = $C_5H_{10}O_2$				1		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

A Level AQA Chemistry

Chapter 24 – answers

Question	Answers	Extra information	Mark	AO Spec reference
02.2	The 3 possible compounds are: $CH_3COOCH_2CH_2CH_3$ $CH_3CH_2COOCH_2CH_3$ $CH_3CH_2COOCH_2CH_3$ $CH_3CH_2CH_2COOCH_3$		1	AO2 3.3.9.1
02.3	There are no marks for matching the letter to the correct choice. Chemically different = different environments			AO3 3.3.15
	C is $CH_3CH_2CH_2COOCH_3$ Singlet at $\delta = 3.65$ ppm is for the OCH_3 protons with zero chemically different protons on an adjacent carbon. The sextet at $\delta = 2.23$ ppm is due the $COCH_2CH_2CH_3$ because there are 5 chemically different protons on adjacent 2 carbons producing spin-spin coupling. The triplet at $\delta = 1.63$ ppm is due to the CO-CH ₂ - protons because of the 2 chemically different protons on the adjacent -CH ₂ - group.		1 1 1	
	D is $CH_3CH_2COOCH_2CH_3$ The <u>quadruplet</u> at δ = 4.15 ppm is due the OCH ₂ - protons being split by the 3 adjacent, chemically different protons on the -CH ₃ group. The <u>quadruplet</u> at δ = 2.25 ppm is due the COCH ₂ - protons being split by the 3 adjacent, chemically different protons on the -CH ₃ group		1 1	
	E is $CH_3COOCH_2CH_2CH_3$ The <u>singlet</u> at δ = 2.05 ppm is due to the COCH ₃ protons with zero chemically different protons on an adjacent carbon.		1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
	The <u>sextet</u> at $\delta = 1.85$ ppm is due to the OCH ₂ CH ₂ CH ₃ protons and the splitting is caused by spin-spin coupling with 5 (<i>n</i> +1 rule) chemically different protons on adjacent carbons. The <u>triplet</u> at $\delta = 4.15$ ppm is due to the OCH ₂ -protons with the 2 CH ₂ protons on the adjacent carbon causing the splitting.	If do not get full marks, then award 1 mark if mention <i>n</i> +1 rule and spin-spin coupling in the correct context.	1	
03.1	The 2-chloromethylbenzene has carbons in 7 different environments and therefore will give 7 peaks in the ¹³ C-NMR spectrum. The 4-chloromethylbenzene has carbons in 5 different environments and therefore will give 5 peaks in the ¹³ C-NMR spectrum.		1 1	AO2 3.3.15
03.2	Sulfuric acid - catalyst Nitric acid supplies/is source of nitronium ions	Allow nitrating reagent	1 1	AO1 3.3.10.2
03.3	$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$		1	AO1 3.3.10.2
03.4	NO_2 NO_2	Names not required for mark although they may be used in answer to parts 03.2 and 03.3	1+1+1	AO1 3.3.10.2; 3.3.1.1;
03.5	Each isomer has carbon atoms in different numbers of (chemical) environments The number of peaks on the ¹³ C-NMR spectrum will give the identity of the isomer 1,2 dinitrobenzene gives 3 peaks; 1,3 dinitrobenzene would give 4 peaks and 1,4 dinitrobenzene gives 2 peaks	Allow different numbers of chemically different carbons	1 1 1	AO2 3.3.15

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.1	F is 2-methylbutan-1-ol It is a primary alcohol because its infrared spectrum shows a peak at 3200-3600 cm ⁻¹ And it can be oxidised to a carboxylic acid because the product of oxidation, has a peak at 1700 cm ⁻¹ for the C==O group and a broad peak at 2500-3300 cm ⁻¹ – the -OH group of a carboxylic acid.	Allow contains -CH ₂ OH group	1 1	AO3 3.3.7; 3.3.5.2; 3.3.6.3
	2-methylbutan-1-ol has a chiral carbon and therefore can exhibit optical isomerism.		1	
04.2	H ₃ C _A CH ₂ CH ₂ CH ₃ CH ₃		1	AO3 3.3.15
	There will be 4 sets of peaks because there are 4 different environments for protons The peak for the 3 protons on carbon A will be a triplet because of the spin-spin coupling with the 2 chemically different protons on carbon B The peak for the 2 protons on B will be a pentuplet (quintet) because of the spin-spin		1 1	
	coupling with the 3 chemically different protons on carbon A and the single proton on carbon C. Some reference to the <i>n</i> +1 rule and spin-spin coupling anywhere in the right context The single proton has a total of 5 chemically different protons (2 on B and 3 on D) so its		1 1	
	peak will be split into a sextuplet The peak for the 3 protons on carbon D will be split into a doublet because of spin-spin coupling with the single proton on carbon C		1	
04.3	$\begin{array}{cccc} H_{3}C & CH_{2} & H_{2}C \\ & & & \\ HOOC & CH_{3} & H_{3}C \end{array} COOH \\ \end{array}$	1 mark for mirror images and 1 for 3-dimensional representation Allow C ₂ H ₅ - for -CH ₂ CH ₃	2	

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.1	2-amino-4-methylpentanoic acid		1	AO1 3.3.1.1; 3.3.13.1
05.2	There are 5 different chemical environments for the carbons in leucine so there will be 5 peaks in its ¹³ C-NMR spectrum AND There are 6 different chemical environments for the carbons in isoleucine so there will be 6 peaks in its ¹³ C-NMR spectrum		1	AO2 3.3.15
05.3	 i) I This refers to the proton on carbon-2 of the chain (next to COOH group) There are 2 chemically different protons on the adjacent carbon. So applying the <i>n</i>+1 rule it will split into a triplet. The integration shows that it is just 1 proton II There are 6 protons responsible for the peak These protons are the 2CH (methyl) groups They are split into a doublet spin-spin coupling with the CH proton on the adjacent carbon 		1 1 1 1 1	AO3 3.3.15
05.3	ii) The proton responsible for this is the CH proton on carbon 2 of the chain It has 1 proton on the adjacent carbon atom and therefore is split into a doublet		1 1	AO3 3.3.15
05.4	They have very similar chemical structures Therefore, they will interact equally strongly with the stationary phase of the column or tlc plate and move with similar rate/speed		1 1	AO2 3.3.15
06.1	The structure of the electrophile is: OH H_{3C} OH H_{3C} OH OH OH OH H_{3C} OH O	Allow CH ₃ CH ⁺ COOH Allow AlCl ₄ ⁻ CH ₃ CH ⁺ COOH	1	AO3 3.3.10.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.2	$\delta = 4.0 \text{ ppm}$:			AO3
	Proton on C4		1	3.3.15
	Peak is due to 1 proton		1	
	Quadruplet due to spin-spin coupling with 3 protons on adjacent C5		1	
				AO3
	δ = 2.45 ppm:			3.3.15
	2 protons		1	
	on C3		1	
	Doublet due to spin-spin coupling with 1 proton on adjacent C2		1	
06.3	Use ¹³ C-NMR		1	AO2
	Ibuprofen has 10 carbons in different environments and the impurity has 12 carbons in different environments		1	3.3.15
L	Γ	<u> </u>		l

۲

Skills box answers:

© Oxford University Press www.oxfordsecondary.com

1. Hands (for example grease from the skin) could contaminate the TLC plate. (Reject 'safety concerns'.)

2. To ensure the drops are (very) small / a dropping pipette would release drops that are too big.

3. To saturate the atmosphere in the development chamber; to prevent the release of toxic solvent vapour.

4. A UV lamp can show up compounds that are colourless/not visible, or that the ninhydrin spray does not show.

5. A greater number of substances will be able to dissolve in it, or to alter the speed at which the solvent front moves up the plate.

۲