A Level AQA Chemistry

Chapter 21 - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Planar ring structure with delocalised electrons Bond length shorter than cyclohexane single bond but not as short as a double bond.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3.3.10.1
01.2	Benzene is a more stable molecule than cyclohexatriene. benzene ($=-208 \mathrm{~kJ} \mathrm{~mol}^{-1}$) which is less exothermic than cyclohexatriene because there is resonance in the structure/delocalisation of the electrons.	Less exothermic/more endothermic/releases less energy	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3.3.10.1, MS
01.3	Bromine (water) Benzene - no change/no (visible) reaction/colour stays the same Cyclohexane - decolourisation of the solution, colour turns from brown/orange to colourless		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3.3.4.2, 3.3.10.1
01.4	because addition reactions would disrupt the rings of delocalised electrons and therefore destabilise the structure	OWTTE	1	3.3.10.1
02.1	Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated HNO_{3} $\begin{aligned} & 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{OR} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3.3.10.2, MS 0.2
02.2			3	3.3.10.2
02.3	Electrophilic substitution		1	3.3.10.2

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 21 - answers

Question	Answers	Extra information	Mark	AO Spec reference
02.4	 3 pairs of bonding electrons and no lone pairs All bonding pairs / bonds repel equally (to arrange themselves as far apart as possible (to minimise repulsion.) Trigonal planar	120° needed on diagram or in explanation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.3.5 } \\ \text { MS 4.1, MS 4.2 } \end{gathered}$
03.1	$\mathrm{CH}_{3} \mathrm{BrORCH} \mathrm{Ol}_{3}$ AND $\mathrm{FeBr}_{3} \mathrm{OR} \mathrm{FeCl} 3$	Either answer and its corresponding halogen carrier is acceptable	1	3.3.10.2
03.2	Electrophilic substitution		1	3.3.10.2
03.3	Reagents: (Concentrated) $\mathrm{H}_{2} \mathrm{SO}_{4}$, AND (concentrated) HNO_{3} Mechanism:	Both needed for the mark	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	3.3.10.2
03.4	Sn AND concentrated HCl Name of product: 1-amino-4-methylbenzene	Must say concentrated	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3.3.10.2
03.5	Reduction		1	3.3.11.1

A Level AQA Chemistry

Chapter 21 - answers

,

Question	Answers	Extra information	Mark	AO Spec reference
04.1			3	3.3.1.1, MS 4.2
04.2	1 peak As all hydrogens are in the same environment.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3.3.15
04.3	Name: Ethylamine		1	$\begin{gathered} \text { 3.3.1.1, 3.3.12.1, } \\ \text { MS 4.2 } \end{gathered}$
04.4	Primary amine is stronger base than ammonia As lone pair is more available (to bond with Hs) (because alkyl groups push electron density onto N)	Or reverse	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3.3.11.2
04.5	Nucleophilic addition-elimination		1	3.3.11.3

A Level AQA Chemistry

Chapter 21 - answers

Question	Answers			Extra information	Mark	AO Spec reference
05.1	Polymer	PVC	Kevlar	1 mark per box	1×4	$\begin{gathered} \text { 3.3.12.1, 3.3.4.3, } \\ \text { MS 4.2 } \end{gathered}$
	Repeating unit					
	Monomer					
	Type of Polymerisation	Addi	Condensation			
05.2	addition polyme condensation poly $\mathrm{HCl} /$ small mole	tion merisa also	economy because only one product economy is less than 100%, because $\mathrm{H}_{2} \mathrm{O}$ /		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3.3.4.3, 3.1.2.5
05.3	Advantages of r Saves limited res plastic does not Disadvantages of Costs energy and Plastic needs col Advantages of \mathbf{d} cheap If burnt: can use Disadvantages of leaking chemical Takes up large ar If burnt, releases	cling: urces, up in ecycli sourc ting and osal: heat ispos an dam of land O_{2} (gre	ectricity s) and toxic HCl	Four of the points from the left (at least one advantage and one disadvantage for disposal AND recycling)	4	3.3.4.3, 3.3.12.2

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 21 - answers

\square

Question	Answers	Extra information	Mark	AO Spec reference
06.1			2	3.3.12.1, MS 4.2
06.2	Polymers have higher melting points than the monomers because there are greater intermolecular forces/forces between molecules, therefore a higher temperature/more energy is needed to overcome them.	Do not allow 'stronger bonds',	1 1	3.3.12.1
06.3	Poly(caprolactam) OR poly(azepan-2-one)		1	3.3.4.3
06.4	Nylon 6 repeating unit:	Need the brackets, don't need the ' n '	1	3.3.12.1
06.5	$\begin{aligned} & 4 \mathrm{~cm}^{3} \times 1.06 \mathrm{~g} \mathrm{~cm}^{-3}=4.24 \mathrm{~g} \\ & 4.24 \mathrm{~g} / 113 \mathrm{~g} \mathrm{~mol}^{-1}=0.0375 \mathrm{~mol}(\text { actual }) \\ & 60 \%=\text { actual } / \text { theoretical } \times 100 \\ & \text { theoretical }=0.375 / 0.6=0.0625 \text { mol azepan- } 2 \text {-one units in monomer } \\ & 0.0625 \mathrm{~mol} \text { azepan-2-one started with } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.2.5, MS 0.0, } \\ 0.2,2.2 \end{gathered}$
06.6	Two from: Incomplete reaction Impure reactants Did not separate out all of the synthesized nylon 6 or side reactions		2	PS 1.2, PS 4.1

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 21 - answers

Skills box answers:

ethanoic
anhydride

2. So that no product or reactant is lost by evaporation./ bonds are strong so it needs a lot of heating
3. Use a dry, clean weighing boat (or another suitable container).

Add 2-hydroxybenzoic acid to the boat. Record mass of boat + solid.
Transfer the solid to the flask for heating under reflux.
Re-weigh the boat. Record mass.
Calculate (mass of boat + solid) - (boat after transferring solid).
4. Place solid in melting-point tube

Place in oil/melting-point apparatus and heat gently.
Record temperatures at which solid starts melting and stops melting.
Compare melting point to values in data book / from tables / other results.

