

Chapter 21 – answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Planar ring structure with delocalised electrons Bond length shorter than cyclohexane single bond but not as short as a double bond.		1 1 1	3.3.10.1
01.2	Benzene is a more stable molecule than cyclohexatriene. benzene (= -208 kJ mol ⁻¹) which is less exothermic than cyclohexatriene because there is resonance in the structure/delocalisation of the electrons.	Less exothermic/more endothermic/releases less energy	1 1 1	3.3.10.1, MS
01.3	Bromine (water) Benzene – no change/no (visible) reaction/colour stays the same Cyclohexane – decolourisation of the solution, colour turns from brown/orange to colourless		1 1 1	3.3.4.2, 3.3.10.1
01.4	because addition reactions would disrupt the rings of delocalised electrons and therefore destabilise the structure	OWTTE	1	3.3.10.1
02.1	Concentrated H_2SO_4 and concentrated HNO_3 $2 H_2SO_4 + HNO_3 \rightarrow 2 HSO_4^- + NO_2^+ + H_3O^+$ OR $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + NO_2^+ + H_2O$		1 1	3.3.10.2, MS 0.2
02.2	NO_2^+ NO_2 NO_2 $+$ H^+ intermediate		3	3.3.10.2
02.3	Electrophilic substitution		1	3.3.10.2

[©] Oxford University Press www.oxfordsecondary.com

Chapter 21 – answers

Question	Answers	Extra information	Mark	AO Spec reference
02.4	Cl Cl Al) _{120°}	120° needed on diagram or in explanation		3.1.3.5 MS 4.1, MS 4.2
	3 pairs of bonding electrons and no lone pairs All bonding pairs / bonds repel equally (to arrange themselves as far apart as possible (to minimise repulsion.) Trigonal planar		1 1 1 1	
03.1	$\mathrm{CH_{3}Br}$ OR $\mathrm{CH_{3}Cl}$ AND $\mathrm{FeBr_{3}}$ OR $\mathrm{FeCl_{3}}$	Either answer and its corresponding halogen carrier is acceptable	1	3.3.10.2
03.2	Electrophilic substitution		1	3.3.10.2
03.3	Reagents: (Concentrated) H_2SO_4 , AND (concentrated) HNO_3 Mechanism: CH_3 $CH_$	Both needed for the mark	1 3	3.3.10.2
03.4	Sn AND concentrated HCl Name of product: 1-amino-4-methylbenzene	Must say concentrated	1 1	3.3.10.2
03.5	Reduction		1	3.3.11.1

© Oxford University Press www.oxfordsecondary.com

Chapter 21 – answers

Question	Answers	Extra information	Mark	AO Spec reference
04.1	or N H		3	3.3.1.1, MS 4.2
	or N H Or N H			
04.2	1 peak As all hydrogens are in the same environment.		1 1	3.3.15
04.3	Name: Ethylamine H H H H H H H H H H H H H H H H H		1	3.3.1.1, 3.3.12.1, MS 4.2
04.4	Primary amine is stronger base than ammonia As lone pair is more available (to bond with Hs) (because alkyl groups push electron density onto N)	Or reverse	1 1	3.3.11.2
04.5	Nucleophilic addition-elimination		1	3.3.11.3

© Oxford University Press www.oxfordsecondary.com

Chapter 21 – answers

Question	Answers			Extra information	Mark	AO Spec reference
05.1	Polymer	PVC	Kevlar	1 mark per box	1×4	3.3.12.1, 3.3.4.3, MS 4.2
	Repeating unit		$ \begin{array}{ c c c c }\hline H & H & H \\ \hline & & C \\ \hline & & C \\ \hline & & O \\ \hline \\ O & O \\ \end{array} $			1415 112
	Monomer	* &= & +				
	Type of Polymerisation	Addition	Condensation			
05.2	addition polymerisation has 100% atom economy because only one product condensation polymerisation has atom economy is less than 100%, because $\rm H_2O/HCl/small$ molecule also produced				1 1	3.3.4.3, 3.1.2.5
05.3	Advantages of recycling: Saves limited resources, plastic does not end up in landfill Disadvantages of recycling: Costs energy and resources Plastic needs collecting and cleaning Advantages of disposal: cheap If burnt: can use the heat to generate electricity Disadvantages of disposal: leaking chemicals can damage wildlife, Takes up large areas of land If burnt, releases CO ₂ (greenhouse gases) and toxic HCl		Four of the points from the left (at least one advantage and one disadvantage for disposal AND recycling)	4	3.3.4.3, 3.3.12.2	

 $\hbox{@ Oxford University Press } \underline{www.oxfordsecondary.com}$

Chapter 21 – answers

Question	Answers	Extra information	Mark	AO Spec reference
06.1	H_2N NH_2 HO O OH		2	3.3.12.1, MS 4.2
06.2	Polymers have higher melting points than the monomers because there are greater intermolecular forces/forces between molecules, therefore a higher temperature/more energy is needed to overcome them.	Do not allow 'stronger bonds',	1	3.3.12.1
06.3	Poly(caprolactam) OR poly(azepan-2-one)		1	3.3.4.3
06.4	Nylon 6 repeating unit: ———————————————————————————————————	Need the brackets, don't need the 'n'	1	3.3.12.1
06.5	$4\mathrm{cm^3} \times 1.06\mathrm{gcm^{-3}} = 4.24\mathrm{g}$ $4.24\mathrm{g}/113\mathrm{gmol^{-1}} = 0.0375\mathrm{mol}$ (actual) $60\% = \mathrm{actual/theoretical} \times 100$ theoretical = $0.375/0.6 = 0.0625\mathrm{mol}$ azepan-2-one units in monomer $0.0625\mathrm{mol}$ azepan-2-one started with		1 1 1	3.1.2.5, MS 0.0, 0.2, 2.2
06.6	Two from: Incomplete reaction Impure reactants Did not separate out all of the synthesized nylon 6 or side reactions		2	PS 1.2, PS 4.1

© Oxford University Press www.oxfordsecondary.com

Chapter 21 - answers

- 2. So that no product or reactant is lost by evaporation./ bonds are strong so it needs a lot of heating
- 3. Use a dry, clean weighing boat (or another suitable container).
 Add 2-hydroxybenzoic acid to the boat. Record mass of boat + solid.
 Transfer the solid to the flask for heating under reflux.

Re-weigh the boat. Record mass.

Calculate (mass of boat + solid) – (boat after transferring solid).

- 4. Place solid in melting-point tube
 - Place in oil/melting-point apparatus and heat gently.

Record temperatures at which solid starts melting and stops melting.

Compare melting point to values in data book / from tables / other results.

OXFORD