A Level AQA Chemistry Chapter 20 – answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Acidified potassium dichromate(VI) AND reflux OR $K_2Cr_2O_7/H_2SO_4$ AND reflux	Must state acidified, or have acid as reagent. Reject dichromate alone as this is an ion not a reagent	1	3.3.5.2,
01.2	Pentanoic acid		1	3.3.1.1,
01.3			1	3.3.9.1,
01.4	$\begin{split} M_{\rm r} \ {\rm pentan-1-ol} &= 88 \ ({\rm gmol^{-1}}) \\ {\rm Moles} \ {\rm pentan-1-ol} &= 0.151 \ {\rm g}/88 \ {\rm gmol^{-1}} = 0.00172 \ ({\rm mol}) \\ {\rm Ratio} \ {\rm alcohol} : {\rm ester} &= 1:1 \\ {\rm Theoretical} \ {\rm moles} \ {\rm ester} &= 0.00172 \ ({\rm mol}) \\ M_{\rm r} \ {\rm ester} &= 130 \ ({\rm gmol^{-1}}) \\ {\rm Theoretical} \ {\rm mass} \ {\rm ester} &= 0.00172 \times 130 = 0.2236 \ {\rm g} \\ \% \ {\rm yield} &= {\rm actual/theoretical} = 0.161 \ {\rm g}/0.2236 \ {\rm g} \times 100 = 72\% \end{split}$		1 1 1 1	3.1.2.5, MS 0.0, MS 0.0, MS 0.2, MS 1.1, MS 2.3
02.1	$H = \begin{bmatrix} H & 0 \\ H = C \\ H \end{bmatrix} = C = C \begin{bmatrix} 0 \\ H \end{bmatrix}$	Must show double bond to carbon and single bond to hydrogen.	1	3.3.1.1
02.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	3.3.8

A Level AQA Chemistry Chapter 20 – answers

Question	Answers	Extra information	Mark	AO Spec reference
02.3	Add Tollens reagent, and warm gently for a few minutes Ketone: no change in the colourless solution Aldehyde: colourless solution produces a grey precipitate of silver/silver mirror is produced on the test tube.		1 1 1	3.3.8
03.1	It is a renewable fuel	Allow other valid points	1	3.3.9.1
03.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Only one of the three ester bonds shown needs to be circled.	1	3.3.9.1
03.3	Dilute acid, heat	Need both reagent and condition for mark	1	3.3.9.1
03.4	H H H H H H H C C C C H O O O H H H	Need to show all bonds for the mark.	1	3.3.9.1
03.5	A straight-chain molecule will have a higher boiling point increased van der Waals forces between molecules meaning more energy is needed to overcome intermolecular forces/attractions		1 1 1	3.1.3.7

A Level AQA Chemistry Chapter 20 – answers

Question	Answers	Extra information	Mark	AO Spec reference
04.1	$\begin{array}{cccc} CH_3 H & O \\ H_3C - C - C - C \\ H_3 H & H \end{array} OR \qquad \qquad OR \\ H & H \end{array}$	Mark for structure of D can be given in the mechanism.	4	3.3.8 3.3.1.1
	Compound D A O $M3$ O H H H O O H			
04.2	3,3-dimethylbutan-1-ol		1	3.3.1.1
04.3	5		1	3.3.15
04.4	Tollens reagent, and warm gently for a few minutes Ketone: no change in the colourless solution Aldehyde: colourless solution produces a grey precipitate of silver/silver mirror is produced on the test tube.		1 1 1	3.3.8
05.1	SOCl ₂	Allow PCl ₃ or PCl ₅	1	3.3.9.2
05.2	$\begin{array}{c} & & H \\ H_{3}C \\ & M1 \\ & & \\$		4	3.3.9.2
05.3	Nucleophilic addition-elimination		1	3.3.9.2

A Level AQA Chemistry

Chapter 20 – answers

Question	Answers	Extra information	Mark	AO Spec reference
05.4	$\begin{split} M_{\rm r} {\rm Compound} {\rm F} &= 78.5 ({\rm g} {\rm mol}^{-1}) \\ {\rm Moles} {\rm compound} {\rm F} &= 1.727 {\rm g} / 78.5 {\rm g} {\rm mol}^{-1} &= 0.022 {\rm mol} \\ {\rm Ratio} {\rm compound} {\rm F} : {\rm ester} = 1:1 \\ {\rm Moles} {\rm ester} {\rm G} &= 0.022 {\rm mol} \\ M_{\rm r} {\rm ester} {\rm G} &= 88 ({\rm g} {\rm mol}^{-1}) \\ {\rm Theoretical} {\rm mass} {\rm ester} {\rm G} &= 1.936 {\rm g} \\ {\rm Percentage} {\rm yield} &= 1.540 / 1.936 \times 100 = 80\% \end{split}$	Allow 79.5%	1 1 1 1	3.1.2.5, MS 0.0, MS 0.1, MS0.2, MS 1.1, MS 2.3,
06.1	Add deionised water to product, aspirin will precipitate Filter off precipitate Wash residue with deionised water Leave to dry		1 1 1 1	3.3.9.2
06.2	$M_{\rm r}$ of aspirin = 180 g mol ⁻¹ $M_{\rm r}$ ethanoic acid acid = 60 g mol ⁻¹ Total mass = 180 + 60 = 240 180/240 = 0.75 OR 75%		1	3.1.2.5, MS 0.0, MS 0.1, MS0.2, MS 1.1, MS 2.3,
06.3	One of: Less corrosive Doesn't produce corrosive fumes of hydrogen chloride		1	3.3.9.2

Skills box answers:

1. a) To ensure the sodium carbonate (solution) is mixed thoroughly with the organic phase.

b) To release the pressure from the build-up of CO_2 / to release CO_2 .

2. a) To remove water (when the liquid is clear there are no droplets of water in the solution).

b) To remove the calcium chloride.