

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Sphere/ball of positive charge Electrons embedded in (like plums)		1 1	3.1.1.1 AO1
01.2	Fired alpha particles / He nucleus / ⁴ He ²⁺ At gold leaf/foil Most passed through AND some bounced back/some deflected Gave evidence for small, dense, positive nucleus	Allow mass instead of dense	1 1 1 1	3.1.1.1 AO1
02.1	The energy required to <u>remove 1 mole</u> of electrons from one mole of <u>gaseous atoms</u>		1 1	3.1.1.3 AO1
02.2	Aluminium 4th ionisation energy shows a large jump	Accept Al	1 1	3.1.1.3 AO2
02.3	They are both to the same number of significant figures		1	3.1.1.3 MS1.1 AO3
03.1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	4s and 3d in either order Reject noble gas config (it asks for 'full')	1	3.1.1.3 AO1
03.2	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰		1	3.1.1.3 AO2
03.3	An element that forms a <u>stable ion</u> with a <u>partially filled d orbital</u>		2	3.2.5.1 AO1
03.4	Same number of protons Different number of neutrons	Allow same atomic number allow different (atomic) mass (number	1 1	3.1.1.2 AO1
03.5	$\frac{100 - 71.23 = 28.77}{\frac{(63 \times 71.23) + (65 \times 28.77)}{100}} = 63.58$	63.575 scores 2 marks 63.57 scores 1	1 1 1	3.1.1.2 AO2 MS1.1,1.2,3.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.6	This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking.	Stage 1: electrospray1a dissolved in polar solvent1b high pressure throughpositively charged needle1c gains a protonORStage 1: lonisation1a gaseous sample1b Electron fired at atom1c collides/hits and removes anouter electroncorrect equation demonstratingionisation can score all 3 step1 mark if in context.Stage 2: Acceleration2a negatively charged plate2b attracts ions2c leave having constant kineticenergy	6	3.1.1.2 AO1
	Level 3 (5–6 marks) All stages are covered and the explanation of each stage is generally correct and virtually complete.			
	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2, stage 3 and then stage 4.			
	Coherent communication requires that there is a comparison between the types of bonding and that the bonding is correct for each substance.			
	Level 2 (3–4 marks) All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.			
	Answer is mainly coherent and shows some progression from stage 1 to stage 2, stage 3 and then stage 4.			
	Level 1 (1–2 marks) Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.			
	Answer shows some progression between two stages.	Stage 3: Ion drift 3a in a vacuum 3b smallest ions travel fastest		
		Stage 4: Detection 4a ion gains electron when hits detector 4b causes current to flow 4c current is proportional to amount/abundance		

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.7	Hexaaquacopper(II) $[Cu(H_2O)_6]^{2+}$	Allow numerical 2	1 1	3.2.5.2 AO1
03.8	$[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow [Cu(H_2O)_4(OH^-)_2]^{2+} + 2H_2O$ Blue precipitate		1 1	3.2.6 AO1
04.1	$(4 \times 1.660540 \times 10^{-27}) + (5 \times 1.674929 \times 10^{-27}) + (4 \times 9.109390 \times 10^{-31})$ = 1.502045×10 ⁻²⁶	1 mark for answer 1 mark for 7 s.f.	2	3.1.1.1 MS1.1 AO2
04.2	$Be^+(g) \rightarrow Be^{2+}(g) + e^-$	1 mark for equation 1 mark for state symbols Ignore (g) on electron	2	3.1.1.3 AO1
04.3	Third electron is being removed from inner shell/1 st shell/1s Nearer to nucleus/less shielding More energy required to remove electron	Allow 'being removed from a positive ion' without clarification for 1 mark	1 1 1	3.1.1.3 AO2
04.4	Beryllium has a <u>higher</u> nuclear charge than lithium Same/similar shielding Electron are pulled closer/ more strongly	Allow 'more protons' and converse	1 1 1	3.1.1.3 AO3
05.1	3 peaks At <i>m/z</i> of 158,160,162 Peak 160 twice as tall as 158 and 162, which are same heights		1 1 1	3.1.1.2 AO2
05.2	Two bromine atoms in each molecule 79 + 81 twice as likely as 79 + 79 or 81 + 81	Allow diagram that demonstrates relative probability of each mass	1 1	3.1.1.2 AO2
05.3	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶		1	3.1.1.3 AO3
05.4	Br ^{2–} would be 5s ¹ so adding an extra electron to a new shell	Do not allow adding an electron to a negative ion	1	3.1.1.3 AO3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.5	1 st mark curly arrow from double bond to Br delta+ 2 nd mark Br ⁻ Br bond to delta-Br atom. 3 rd mark structure of haloalkane with C ⁺ and Br 4 th mark curly arrow from lone pair on Br ⁻ to C ⁺ Electrophilic addition		1 1 1 1	3.3.4.2 AO1
06.1	Average mass of 1 atom realative to 1/12 th of carbon-12		1 1	3.1.1.2 AO1
06.2	$\frac{(40 \times 96.46) + (42 \times 0.70) + (43 \times 0.30) + (44 \times 2.20) + (48 \times 0.34)}{100} = 40.14$	Allow 1 mark for correct working	2	3.1.1.2 MS1.2 AO2
06.3	Second ionisation energy is removing an electron from a positive ion More energy required to overcome stronger attraction	Allow no mutual repulsion between 4s e⁻	1 1	3.1.1.3 AO3
06.4	Ca has more electron shells / more electrons so more shielding So easier to remove electron from outer shell		1 1 1	3.1.1.3 AO3
06.5	Ca (s) + $2H_2O \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq) + H_2(g)$	1 mark for equation 1 mark state symbols	2	3.2.2 AO3
07.1	Different number of neutrons / mass (number)		1	3.1.1 AO1
07.2	Same chemical properties Same electron configuration		1 1	3.1.1.2 AO1
07.3	All ions have constant kinetic energy Heavier ions move slower		1 1	3.1.1.2 AO1

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
07.4	$\frac{(24 \times 80) + (25 \times a) + (26 \times (20 - a))}{100} = 24.3$ $\frac{1920 + 25a + 520 - 26a}{100} = 24.3$ $\frac{2440 - a}{100} = 2430$ $2440 - a = 2430$ $-a = -10$ $a = 10\%$	Allow any method that shows 80% 10% 10%	1	3.1.1.2 MS2.1 AO2
	20 - 10 = 10%		1	
07.5	$\frac{24 \times 10^{-2}}{6.022 \times 10^{23}} = 3.985 \times 10^{-26} \text{ (kg)}$ $v^2 = \frac{2ke}{M} = \frac{(2 \times 4.58 \times 10^{-16})}{3.985 \times 10^{-26}} = 2.29839 \times 10^{10} \text{ (m}^2\text{/s}^2\text{)}$	Calculation of mass into kg If not converted to kg, max 4 If not divided by L lose M1 and M5, max 3	1	3.1.1.2 MS1.11.2 AO2
	$v = \sqrt{2.29839 \times 10^{10}}$ ($v = 1.51604 \times 10^5 \text{ m s}^{-1}$)	For re-arrangement	1	
	v = d/t or $d = vt$ or with numbers	For expression with square root	1	
	$d = (1.51604 \times 10^5 \times 1.34 \times 10^{-5}) = 2.03 \text{ (m)}$ Alternative method		1	
	$\frac{24 \times 10^{-3}}{6.022 \times 10^{23}} = 3.985 \times 10^{-26} (\text{kg})$	Must be 3 s.f. to score mark 5	1	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
	v = d/t	M2, M3 and M4 are for algebraic expressions or correct expressions	1	
	$d^2 = \frac{ke \times 2t^2}{m}$	with numbers	1	
	$d = \sqrt{\frac{ke \times 2t^2}{m}} = \sqrt{\frac{4.58 \times 10^{-16} \times 2 \times (1.34 \times 10^{-5})^2}{3.985 \times 10^{-26}}}$		1	
	<i>d</i> = 2.03 (m)	Must be to 3 s.f.	1	
08.1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴		1	3.1.1.3 AO1
08.2	Both are molecular covalent	Must identify covalently bonded	1	3.1.3.7
	So van der waats are the internotecular force Sulfur molecules have <u>more electrons</u> so <u>stronger van der Waals</u>		1 1	AU3
00.2	Powersible reaction where the forwards and backwards rates are equal		1	2126
00.5	So the concentrations of reactant remain constant		1	AO1
08.4	No effect		1	3.1.3.6, AO1
08.5	pp = 12 kPa	Ignore units	1	3.1.10
	Mole fraction = pp \div total pressure = 12/104 = 0.115		1	AO2 MS1.1 MS2.2 MS2.3

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
08.6	68 kPa	Allow e.c.f. from 08.5	1	3.1.10 AO2 MS1.1 MS2.2MS2.3
08.7	$Kp = \frac{(pSO_3)^2}{(pSO_2)^2 \times (pSO_2)}$ $Kp = \frac{68^2}{24^2 \times 12} = 0.669$	Allow e.c.f. from 08.5 + 08.6 1 mark for substitution 1 mark for answer	1 1 1	3.1.10 AO2 MS1.1 MS2.2MS2.3
08.8	Shift to the right/ forwards/products/SO $_3$ Increasing pressure favours side with fewest moles		1 1	3.1.10 AO3

۲

Skills box answers:

1. 39.13

2. 94%

3. 24.32

۲

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>