

Question	Answers					Extra information	Mark	AO Spec reference
01.1	Figure 1 is the aldehyde –There is a peak at 1750 cm ⁻¹ for C=O And no broad peak between 2500 and 3300 cm ⁻¹ for OH Figure 2 is the carboxylic acid – it has the C=O peak at 1750 cm ⁻¹ . There is a broad peak between 2500–3300 for OH of carboxylic acid Figure 3 is the alcohol There is a peak at 3200–3600 cm ⁻¹ Or there is no peak at 1750 cm ⁻¹ .					The unit cm ⁻¹ is not essential Allow no peak at 3200–3600 cm ⁻¹ Ignore reference to C—H bonds	1 1 1 1 1	AO1 3.3.6.3
01.2	Reflux Excess acidified potassium dichromate					Reject dichromate on its own as a reagent was asked for	1 1	AO1 3.3.5.2
01.3	The peak between 3200 and 3600 cm ⁻¹ reduces/disappears (sharp) peak at 1630–1820 cm ⁻¹ appears As the alcohol is converted into an aldehyde Then a broad peak appears between 2500–3300 As the aldehyde is converted to a carboxylic acid					Allow as CH_2OH changes to CHO Allow as CHO changes to COOH	1 1 1 1	AO2 3.3.6.3
02.1		Carbon	Hydrogen	Oxygen]			AO1
	No. of moles	<u>62.1</u> 12	$\frac{10.3}{1}$	$\frac{27.6}{16}$			1	5.1.2.4
	Relative number of atoms	$\frac{5.18}{1.72} = 3$	$\frac{10.3}{1.72} = 6$	$\frac{1.73}{1.72} = 1$				
	The empirical formula = C_3H_6O						1	
02.2	-COOH / carboxyl / carboxylic acid There is a sharp peak at 1630–1820 cm ⁻¹ for C=O AND a broad peak at 2500–3300 cm ⁻¹ for OH in COOH group				If they just give the formula or name it then just 1 mark	1 1	AO2 3.3.6.3	

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

Question	Answers	Extra information	Mark	AO Spec reference
02.3	The molecular mass = 116 because the molecular ion peak is at 116 The empirical formula (C_3H_6O) mass = 36 + 6 + 16 = 58. Therefore, molecular formula = 2 × Empirical formula	Accept M ⁺ peak	1	AO2 3.3.6.2 3.1.2.4
	Molecular formula = $C_6H_{12}O_2$		1	
02.4	OH HO O OH O	1 mark for each	1+1	AO3 3.3.1.3
02.5	A is $(CH_3)_3CCH_2COOH$ The other isomer has a chiral carbon		1 1	AO3 3.3.7
03.1	$H = \begin{bmatrix} H & H & H & H \\ I & I & I & I \\ C = C & C & C & C \\ I & I & I & 0 \\ H & H & H & 0 \\ \end{bmatrix} = H$	Bond angles are not important in these displayed formulae	1	AO1 3.3.9.1;
	Butanoic acid H O H H H		1	
	Ethyl ethanoate			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question		Ans	wers	Extra information	Mark	AO Spec reference		
03.2	They both have a peak at 1750 cm ⁻¹ because of the C—O group The butanoic acid has a broad peak between 2500 and 3300 cm ⁻¹ because of its OH group. Ethyl ethanoate has no such peak (has no -OH group).						1 1	AO2 3.3.6.3
03.3	OH OH					Allow CH ₃ groups	1	AO2 3.3.1.3
03.4	Add (solid) sodium hydrogencarbonate If there is effervescence then the substance is the acid $CH_3CH_2CH_2COOH + NaHCO_3 \rightarrow CH_3CH_2CH_2COO^-Na^+ + H_2O + CO_2$					Allow any carbonate or hydrogen carbonate Or gas produced turns limewater cloudy	1 1 1	AO1 3.3.9.1
03.5	The intermolecular forces in butanoic acid include hydrogen bonds These are stronger than the permanent dipole forces between the ethyl ethanoate molecules						1 1	AO2 3.3.9.1; 3.1.3.7
04.1	No. of molesRelative number of atomsEmpirical formula = $C_5H_{12}O$ Molecular mass/empirical foMolecular formula = empirical	Carbon 68.2/12 5.68/1.14 = 5 rmula mass al formula =	Hydrogen 13.63/1 13.63/1.14 = 12 = $88/88 = 1$ C ₅ H ₁₂ O	Oxygen 18.2/16 1.14/1.14 = 1		It must be clear, using m/z data, that em formula = mole formula.	1 1 1	AO1 3.1.2.4
04.2	The functional group is an alcohol because of the broad absorption between 3200 and 3600 $\rm cm^{-1}$					'Alcohol' is enough for the mark. Allow -OH/hydroxyl NOT hydroxide	1	AO1 3.3.6.3

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.3	OH pentan-1-ol	Name and formula required.	1	AO2 3.3.1.3
	pentan-2-ol	Do not accept any branched compounds	1	
	pentan-3-ol OH		1	
04.4	E-pent-2-ene	The isomers can be other way round each time	1	AO3 3.3.5.3 3.3.1.3
	Z-pent-2-ene		1	
04.5	Pentan-3-ol Pentan-1-ol will give just 1 product - pent-1-ene Pentan-2-ol will give 3 products: pent-1-ene and the 2 <i>E-Z</i> isomers of pent-2-ene		1 1 1	AO3 3.3.5.3
05.1	-COOH/carboxylic acid/carboxyl Has broad peak for -OH (2500–3300 cm ⁻¹) and C==O (1700 cm ⁻¹)	Not carboxylate	1 1	AO1 3.3.6.3
05.2	 In C – bromo group – pale cream ppt etc. with silver nitrate D is a primary alcohol because it gave a carboxylic acid when fully oxidised C, D (and E) contain C=C bond because they decolourised bromine water, 	Reasons also required for each mark.	1 1 1	AO2 3.2.3.1; 3.3.3.1; 3.3.5.2; 3.3.4.2

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
05.3	HO CH_2 CH_2 CH_2 D	Allow variations on these e.g. $HOCH_2CH_2CH=CH_2 D$ $BrCH_2CH_2CH=CH_2 C$ $HOOCCH_CH=CH_2 F$	1	AO3 3.2.3.1; 3.3.3.1; 3.3.5.2; 3.3.4.2
	$\begin{array}{c} Br \\ CH_2 \\ CH_2 \\ CH \end{array} CH \\ CH \\ CH \\ CH \\ CH \\ CH \\ CH$		1	
	O CH ₂ CH ₂ E CH ₂ CH ₂ E		1	
	D must have the CH_2OH group in order to give -COOH in E This means that C must be a primary haloalkane		1	
05.4	$H_2C = CHCH_2CH_2Br + Br_2 \rightarrow CH_2BrCHBrCH_2CH_2Br$		1	AO2 3.3.4.2
06.1	C_6H_{12} 6 × 12 + 12 × 1 = 84 / M_r = molecular ion peak	Allow 84/12 working, but must be clear that some Hs needed etc.	1 1	AO2 3.1.2.4
06.2	G is an aldehyde Because it can be oxidised to a carboxylic acid The infrared spectra show that the product of oxidation is a carboxylic acid (peaks at 2500–3300 and 1750 cm ⁻¹)		1 1 1 1	AO3 3.3.6.3; 3.3.8
	Because its molecular ion peak is at $m/z = 44$ (mass of C_2H_4O)			

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.3	H is a ketone Its infrared spectrum does not change after refluxing with acidified dichromate. It is butan-2-one This fits with M_r of 72 (C ₄ H ₈ O)		1 1 1 1	AO3 3.3.6.3; 3.3.8
06.4	$CH_3CH=C(CH_3)CH_2CH_3$		1	AO3 3.3.1.3; 3.3.4.1;

۲

Skills box answers:

1. Cyclohexene.

۲

 $C_6H_{10}(l) + Br_2(aq) \rightarrow C_6H_{10}Br_2(l)$

2. Cyclohexanecarboxylic acid

 $2C_6H_{11}COOH(l) + Na_2CO_3(aq) \rightarrow 2Na(C_6H_{11}COO)(aq) + H_2O(l) + CO_2(g)$

3. a. Cyclohexanone and cyclohexanol are flammable and should be kept away from naked flames.

b. Fill a beaker with hot water / use a water bath. Place boiling tubes in water bath and leave to a few minutes.