

Question	Answers	Extra information	Mark	AO Spec reference
01.1	<i>E</i> -3-methylpent-2-ene	If the methyl group is given priority over the ethyl group (see below), then 2 marks only.	1	AO2 3.3.1.3
	Z-3-methylpent-2-ene	Z-3-methylpent-2-ene		
	correct skeletal formulae correct names the ethyl group having priority over the methyl group	<i>E</i> -3-methylpent-2-ene If the number of carbons is wrong then zero marks.	1 1	
01.2	There is no free rotation about the C=C double bond Each carbon in the C=C bond is attached to 2 different groups or atoms $(CH_3)_2C=C(CH_3)_2$ Each carbon in the C=C is attached to 2 identical groups.	No alternatives except atoms only or groups is acceptable	1 1 1	AO2 3.3.1.3
01.3	Optical A and D <i>E-Z</i> B and D	Both letters essential for each mark	1 1	AO2/AO3 3.3.1.3; 3.3.7
01.4	<i>E</i> -3-chloropent-2-ene Give 1 for <i>E</i> and 1 for 3-chloropent-2-ene		1 1	AO2 3.3.1.1

Question	Answers	Extra information	Mark	AO Spec reference
02.1	C—C single bond and dotted lines on either side Correct groups on both carbons $ \begin{bmatrix} H_3C & H \\ H_3C & -C & -C & -C & -C & \\ & & & & & \\ & & & & & & \\ & & & & & &$	The 'n' outside the brackets is not essential as the question asks only for the repeat unit.	1 1	AO2 3.3.4.3
02.2	Alkene: from orange to colourless Polymer: No change	Allow brown and clear	2	AO3 3.3.4.2; PS4.1
02.3	The 2-methylpropene is unsaturated the polymer is saturated so no reaction $(CH_3)_2C=CH_2 + Br_2 \rightarrow CH_3)_2CBrCH_2Br$	Displayed or skeletal formulae are acceptable	1 1 1	AO1 3.3.4.3
02.4	H = C = C + Cl + Cl + Cl + Cl + Br + C = C + Cl + Cl + Cl + Cl + Cl + Cl +	Reject 1-chloro-1-bromopropene (alphabetical order)	1 1 1 1+1	AO3 3.3.4.3

Question	Answers	Extra information	Mark	AO Spec reference
03.1	$\begin{array}{c} H \\ H $	Marks given on diagram. The arrows must be as shown.	5	AO2 3.3.4.2
03.2	In the tertiary carbocation there are 3 alkyl groups; in the primary there is just 1 The electron-releasing alkyl groups tend to stabilise the positive charge The greater the number of alkyl groups the greater the stability	Accept methyl groups for alkyl for the 3° cation Accept delocalise positive charge Accept greater delocalisation	1 1 1 1	A01 3.3.4.2
03.3	$CH_3CH_2CH_2^+$ and $CH_3C^+HCH_3$	Do not accept $C_3H_7^+$	1+1	AO3 3.3.4.2
04.1	$H \xrightarrow{H^{+}}_{H} H $		5	AO1 3.3.4.3; 3.3.5.1

Question	Answers	Extra information	Mark	AO Spec reference
04.2	$K_{\rm P} = \frac{\rm pC_2H_5OH}{\rm pH_2O \times pC_2H_4}$		1	AO2 3.1.10
04.3	$\begin{array}{l} {\sf P}_{ethanol} = 0.15 \times 5000 \; {\sf kPa} = 750 \; {\sf kPa} \\ {\sf P}_{ethene} = 0.23 \times 5000 \; {\sf kPa} = 1150 \; {\sf kPa} \\ {\sf P}_{steam} = 0.62 \times 5000 \; {\sf kPa} = 3100 \; {\sf kPa} \end{array}$	2 marks for all 3 1 mark for 2 out of 3	2	AO2 3.1.10
04.4	$\begin{split} K_{\rm p} &= 750 \ /(1150 \times 3100) = 2.10 \times 10^{-4} \ \text{kPa}^{-1} \\ \text{OR} \\ K_{\rm p} &= 750 \times 10^3 \ /(1150 \times 10^3 \times 3100 \times 10^3) = 2.10 \times 10^{-7} \ \text{Pa}^{-1} \end{split}$	1 for correct value and 1 for the units	1+1	AO2 MS0.0; 3.1.10
05.1	A methyl-propan-2-ol 3° B dimethylpropan-1-ol 1° C methylpropan-1-ol 1°	Both name and classification required for each mark	1 1 1	AO1/AO2 3.3.5.2
05.2	A and C $(CH_3)_2C = CH_2$		1	AO2 3.3.5.3
05.3	B It has no hydrogen atoms on the carbon adjacent to the C attached to the -OH group.		1 1	AO2 3.3.5.3
05.4	Either $CH_3CH(OH)CH_2CH_3$ Butan-2-ol OR $CH_3CH_2CH_2CH_2OH$ Butan-1-ol		1 1 1 1	AO2 3.3.1.3;
05.5	$\begin{array}{c} C_4H_9 & & 0 & 1 \text{ mark for dipoles} \\ H & 1 \text{ mark for lone-pair on oxygen} \\ H & 1 \text{ for dashed line for hyrogen bond} \\ \bullet & \bullet \\ H & & \bullet \\ H & & H \end{array}$	Each component is a separate mark.	3	AO2 3.1.3.7

Question	Answers	Extra information	Mark	AO Spec reference
06.1	Warm both alcohols (separately) with acidified potassium dichromate solution With E the solution changes from orange to green	Allow $H^+/Cr_2O_7^{2-}$	1 1 1	AO1 3.3.5.2
06.2	Refluxing will return the products to the reaction flask. Oxidising the aldehyde to the carboxylic acid		1 1	AO3 3.3.5.2
06.3	Distillation will remove the products from the reaction vessel Any aldehyde formed cannot be oxidised further to the carboxylic acid (if it has already been removed)		1 1	AO3 3.3.5.2
06.4	$ \begin{array}{l} \mbox{Group I CH}_3\mbox{CH}_2$		1 1	AO2 3.3.5.2
06.5	Warm with Tollen's reagent A silver precipitate/silver mirror confirms presence of aldehyde OR Warm with Fehling's solution Brick-red precipitate confirms presence of aldehyde		1 1	AO1 3.3.5.2

Skills box answers:

- 1. To ensure the liquid boils calmly without splashing into the exit tube. / They provide a site for nucleation of bubbles and thus prevent flash boiling. (Reject 'It is safer' or 'to stop bumping'.)
- 2. Filling from the bottom prevents bubbles of air becoming trapped in the condenser. Air is an insulator / stops heat from being transferred effectively / prevents condensation of the distillate.
- 3. Add Tollen's reagent/Fehling's solution to the product and warm gently. If propanal is present then a silver mirror (or grey precipitate) or a brick-red precipitate will form, but if only propan-1-ol is present there will be no change as the alcohol is oxidised by the weak oxidising agents in these tests.
- 4. Propene is a gas so will leave the reaction vessel anyway