A Level AQA Chemistry

Chapter 16-answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	from C—Cl to C—I, the bond gets less polar This means that the carbon (in the C—X bond) is less electron deficient The nucleophile feels less attraction to the electron-deficient carbon and the reaction is slower.		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1
01.2	- Choose halogenoalkanes with similar structures. For example, 1-chlorobutane, 1-bromobutane, etc. IGNORE any investigation into the effect of primary, secondary etc haloalkanes - Mix silver nitrate solution with ethanol/alcohol in separate test tubes. - The ethanol acts as a solvent for the silver nitrate and the halogenoalkane or words to that effect - The silver ions will react with any halide ions formed in the reaction to give a precipitate (of the silver halide). Allow equations - Warm the mixtures in beakers of warm water. - Add equal amount/drops/volume/mass) of halogenoalkane to each tube and time how long it takes for a precipitate to appear.	This is for a fair test. Avoid selection of primary and secondary/ tertiary halogenoalkanes because a mixture of these will have their own effect on the rate. Their molar volumes are very similar and therefore adding equal volumes is acceptable.	1×6	$\begin{gathered} \text { AO3 } \\ \text { PS 2.4; PS 4.1; } \end{gathered}$
01.3	The precipitate will be formed most quickly with the iodoalkane Because the C—I bond is the weakest / C—I breaks more easily		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 3.3 .3 .1 \\ \text { AO3 } \\ 3.3 .3 .1 \end{gathered}$
02.1	Electron-pair donor		1	$\begin{gathered} \text { AO1 } \\ \text { 3.3.3.1 } \end{gathered}$

A Level AQA Chemistry

Chapter 16-answers

Question	Answers	Extra information	Mark	AO Spec reference
02.2	Lone-pair electrons and negative charge on the 'OH'. Dipole on $\mathrm{C}-\mathrm{Cl}$ bond, i.e. $\mathrm{C}^{\delta+}-\mathrm{Cl}^{\delta-}$ Curly arrow from either lone-pair on 'OH'. Onto $\mathrm{C}^{\delta+}$ Curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond onto Cl One product is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ (or displayed formula) Cl^{-}other product	Both electron pair and charge on Cl :- are necessary to 'balance' the mechanism.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ 3.3 .3 .1 \end{gathered}$
02.3	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}+2 \mathrm{NaOH} \rightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{NaBr} \\ & \mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{HBr} \end{aligned}$	1 for correct products and 1 for balancing. 1 for correct products and 1 for balancing. For second equation accept $4 \mathrm{NH}_{3}$ on LHS and $2 \mathrm{NH}_{4} \mathrm{Br}$ on RHS	2 2	$\begin{gathered} \mathrm{AO} 2 \\ \text { 3.3.3.1; 3.3.11.1 } \end{gathered}$
03.1	Butan-1-ol		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { PS 1.2; } \end{gathered}$
03.2	Sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { PS 1.2; ATd; } \end{gathered}$
03.3	Continuous evaporation and condensation owtte		1	$\begin{aligned} & \text { AO2 } \\ & \text { AT g } \end{aligned}$
03.4	The bromobutane and the aqueous mixture are immiscible The bromobutane is denser than the aqueous layer so sinks to the bottom and can be run off.		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { PS } 1.2 \end{gathered}$

A Level AQA Chemistry

Chapter 16-answers

Question	Answers	Extra information	Mark	AO Spec reference
03.5	$M_{\mathrm{r}}($ butan-1-ol $)=74$ and $M_{\mathrm{r}}(1$-bromobutane $)=136.9$ No. of moles of butan-1-ol $=4.8 / 74=0.0649$ No. of moles of 1-bromobutane $=5.75 / 136.9=0.0420 \mathrm{~mol}$ Percentage yield $=(0.0420 / 0.0649) \times 100 \%=64.7 \%$	If the relative molecular masses are incorrect then allow ecf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ 3.1 .2 .5 ; \text { PS } 3.2 \end{gathered}$
04.1	Curly arrow from lone-pair or negative charge on OH^{-}to nearest hydrogen. Curly arrow from the $\mathrm{C}-\mathrm{H}$ bond to end on bond between 2 carbons Curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to end on chlorine Product: Cl^{-}		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO1 } \\ \text { 3.3.3.2 } \end{gathered}$
04.2	 From A just 1 product From B-3 products - pent-1-ene, E-pent 2-ene and Z-pent-2-ene From C there are no products of elimination because there are nc hydrogens on the carbon next to carbon attched to bromine	5 marks - 4 for the 4 structures and 1 for the zero products for C	5	$\begin{gathered} \mathrm{AO2} \\ \text { 3.3.1.2; 3.3.1.3 } \end{gathered}$
05.1	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl} \rightarrow \mathrm{CF}_{3} \mathrm{CH}_{2} \bullet+\mathrm{Cl} \bullet$		1	$\begin{gathered} \text { AO1 } \\ \text { 3.3.3.3 } \end{gathered}$
05.2	The C-F bond is strong/too strong		1	$\begin{gathered} \text { AO1 } \\ \text { 3.3.3.3 } \end{gathered}$
05.3	$\begin{array}{ll} \mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O} & \mathrm{X}=\mathrm{O} \\ \mathrm{Cl} \bullet+\mathrm{O} \rightarrow \mathrm{ClO} \bullet & \mathrm{Y}=\mathrm{ClO} \\ \mathrm{ClO} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2} & \mathrm{Z}=\mathrm{Cl} \bullet \end{array}$ The $\mathrm{Cl} \bullet$ is regenerated	There are no alternatives	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2 } \\ \text { 3.3.3.3 } \end{gathered}$
05.4	Number of moles of CFC in $1 \mathrm{~kg}=1000 / 118.5=8.44 \mathrm{~mol}$ Number of moles of O_{3} removed $=8.44 \times 10^{5}$ Mass of O_{3} removed $=8.44 \times 10^{5} \times 48$ $4.05 \times 10^{7} \mathrm{~g}=4.05 \times 10^{4} \mathrm{~kg}$ or 40050 kg	$\begin{aligned} & 1 \text { for } M_{\mathrm{r}} \\ & 1 \text { for calculation } \end{aligned}$	$\begin{gathered} 1+1 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \text { AO2 and AO3 } \\ \text { 3.1.2.2; 3.1.2.4 } \\ 3.1 .2 .5 \end{gathered}$

© Oxford University Press www.oxfordsecondary.com

A Level AQA Chemistry

Chapter 16-answers

AO

Question	Answers	Extra information	Mark	AO Spec reference
06.1	ethanoate ($\mathrm{CH}_{3} \mathrm{COO}^{-}$) ion.		1	$\begin{gathered} \text { AO2 } \\ \text { 3.3.3.2 } \end{gathered}$
06.2	Lone pair and negative charge on ethanoate ion Curly arrows onto electron deficient carbon and from $\mathrm{C}-\mathrm{Br}$ bond onto Br dipoles on carbon and bromine Correct products including Br:-		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO1} \text { and } \mathrm{AO} 3 \\ 3.3 .3 .2 \end{gathered}$
06.3	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}(\mathrm{l}) \\ & \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{l})+\mathrm{AgBr}(\mathrm{~s}) \end{aligned}$	1 for balanced symbol equation 1 for state symbols	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{AO2} \\ \text { 3.2.3.1 } \end{gathered}$
06.4	The AgBr is the only solid present and can be filtered off from the other substances		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO3 } \\ \text { 3.2.3.1; } \\ \text { AT d; } \\ \text { PS 1.2 } \end{gathered}$

Skills box answers:

1. $m=\frac{y-c}{x}$
2. $s=P-q r^{2}$
3. $[\mathrm{D}]=\frac{[\mathrm{A}][\mathrm{B}]}{[\mathrm{C}] K_{\mathrm{c}}}$
4. $p(Y)=\sqrt[3]{\frac{p(Z) K_{\mathrm{p}}}{p(x)^{2}}}$
5. $\left[\mathrm{H}^{+}\right]=\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} 10^{-\rho K_{a}}$
