

Question	Answers	Extra information	Mark	AO Spec reference
01.1	A <u>compound</u> made up of hydrogen and carbon <u>only</u> .	The underlined terms are essential.	1	AO1 3.3.2
01.2	Its molecular formula is C_5H_{12} . Relative molecular mass = 5 \times 12 + 12 \times 1 = 72		1 1	AO2 3.1.2.4
01.3	Isomers have the same molecular formula but different structural formulae.		1	AO1 3.3.1.3
01.4	$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \text{ pentane}$ $CH_{3}CH(CH_{3})CH_{2}CH_{3} \text{ 2-methylbutane}$ $C(CH_{3})_{4} \text{ or } (CH_{3})_{4}C \text{ 2,2-dimethylpropane}$	Both formula and name required for each mark. Any order will do. For the 2 nd and 3 rd isomers = make sure the commas and dashes are correct.	1 1 1	AO2 3.3.1.3
01.5	$\begin{array}{l} 0.36 \text{g} = 0.36/72 \text{mol} = 5 \times 10^{-3} \text{mol} \\ \\ \text{Number of molecules} \\ = 5 \times 10^{-3} \times 6.022 \times 10^{23} = 3.01 \times 10^{21} \\ \\ \text{In each molecule there are 17 atoms. } \therefore \text{ Total number of atoms} \\ = 3.01 \times 10^{21} \times 17 = 5.12 \times 10^{22} \end{array}$	Just the answer with no reasoning shown is 1 mark only.	1 1 1	AO2 and AO3 MS1.4; 3.1.2.2

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
	I pent-1-ene	Do not allow pentene	1	AO2
02.1	II 2-methylbut-2-ene III pent-2-ene		1 1	3.3.1.3
	Stereoisomers have the same structural formula		1	AO1
02.2	Have different arrangement of bonds in space	For 2 nd mark allow have different displayed formulae	1	3.3.1.3
	Isomer III		1	AO2
02.3			1	3.3.1.3
02.4	There is no free rotation about the C—C double bond.		1	AO1
02.4	On each carbon of the C—C bond, there are 2 different atoms or groups.		1	3.3.1.3
02.5	Methylcyclobutane		1	AO2 3.3.1.1
03.1	Use the ideal gas equation		1	AO2
	$n = \frac{PV}{P}$	Some evidence of using the		3.1.2.3
	RT	equation is required		
	$n = \frac{1.01 \times 10^5 \times 85 \times 10^{-6}}{8.31 \times 450}$		1	
	= 2.2957 ×10 ⁻³ mol	answer to 2 s.f.	1	
	$M_{\rm r} = m/n = 0.20/2.2957 \times 10^{-3} = 87 {\rm g \ mol^{-1}}$		1	

۲

© Oxford University Press www.oxfordsecondary.com

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
03.2	The last (highest value) significant peak		1	AO1 3.3.6.2
03.3	Error = 100% × 88–87 / 88 1.14%		1 1	AO2 PS2.3
03.4	a = 109.5 / 109° b = 104.5°	Allow 109°	1 1	AO1 MS4.1; 3.1.3.5
04.1	Chlorine is more <u>electronegative</u> than carbon electrons are not shared equally / The electrons in the covalent bond are attracted to more strongly to the chlorine atom electron cloud distorted towards chlorine		1 1 1	AO2 3.1.3.6
04.2	The molecule is (tetrahedral and) symmetrical (The electrons (electron clouds) are symmetrically distributed)This so the dipoles cancel out		1 1	AO2 3.1.3.6
04.3	$\begin{array}{c} \delta + & H \\ & & \\ Cl & Cl \\ \delta - & Cl \end{array}$	The diagram would be reversed showing δ - end of $CHCl_3$ pointing towards the δ + end of propanone	2	AO3 3.1.3.6
04.4	CHCl ₃ – it is more polar It interacts more strongly/is attracted more strongly to the polar stationary phase and takes longer to leave the column		1 1	AO3 3.1.3.6; 3.3.16

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
04.5	Both compounds have permanent dipoles Diagram shows the orientation of the molecules as shown below with dipole-dipole forces shown in-between molecules CI $\delta - CI$ $C - H \delta + wwwww \delta - O = C \delta + CH_3$ CI	The dipoles must be shown correctly	1 2	AO3 3.1.3.7
05.1	CH ₃ CH ₂ CH ₂ CH ₂ OH CH ₃ CH ₂ CH ₂ CH ₂ CH ₃		1 1	AO1 3.3.1.3
05.2	Butan-1-ol has an OH group, which can hydrogen bond to other OH groups on the butan-1-ol molecules. Pentane has only very weak instantaneous dipole-instantaneous dipole forces between the molecules which are transient (temporary). (Butan-1-ol also has these forces.) The hydrogen bonds are stronger than the instantaneous dipole-instantaneous dipole forces between the molecules.		1 1 1	AO2 3.1.3.6 and 3.1.3.7
05.3	Fill both burettes with the two liquids and rub the nylon rod with the silk rag to produce a charged rod. Run each liquid <u>slowly</u> from the burette (into a beaker). Observe any deviation of the liquid stream. The butan-1-ol will be deviated a lot because it is a polar liquid. The pentane stream will not be deviated because it is non-polar and will not be affected by the electrical field.		1 1 1 1 1	AO1 and AO3 PS1.2; 3.1.3.7

۲

۲

۲

Question	Answers	Extra information	Mark	AO Spec reference
06.1	CH ₂ BrCH ₂ Br 1, 2-dibromoethane CH ₃ CHBr ₂ 1, 1-dibromoethane	Both correct name and structure required for each mark	1 1	AO2 3.3.1.3
06.2	H H H C Br H C H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H H H H H H H H H H	Both correct name and structure required for each mark	1 1 1	AO2 3.3.1.3
06.3	1, 1-dibromoethene and Z-1, 2-dibromoethene are polar. The more electronegative bromine atoms are at one end or on one side of the molecule. This leads to an asymmetric distribution of electrons/charge and therefore the molecule is polar.		1 1 1	AO3 3.1.3.6; 3.3.1.3
06.4	In $C_2H_4Br_2$ the bond angle is 109.5° In $C_2H_2Br_2$ the angle is 120°		1 1	AO2 3.1.3.5

۲

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲

۲

Skills Box answers:

1. $\frac{0.1}{12} \times 100 = 0.83\%$ 2. $\frac{0.1}{45} \times 100 = 0.22\%$ 3. $\Delta V = 36.75 - 12.50 = 24.25 \text{ cm}^3$ $\frac{2 \times 0.05}{24.25} \times 100 = 0.41\%$ 4. $\Delta T = 45.0 - 22.5 = 22.5$ $\frac{2 \times 0.05}{22.5} \times 100 = 4.4\%$

© Oxford University Press <u>www.oxfordsecondary.com</u>

۲