A Level AQA Chemistry

Chapter 11 - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	Sodium oxide is ionic so strong attraction between oppositely charged ions Sulfur dioxide is molecular covalent so weak attractions/dipole-dipole So less energy is needed to separate the molecules		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
01.2	Aluminium oxide has smaller, more highly charged positive ions / greater charge density Oxide ions can get closer So stronger bonds form/more tightly held	Allow Al is a $3^{+} \mathrm{Na}$ is a 1^{+}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
01.3	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ pH 12-14 Aluminium oxide is insoluble pH 7 $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ pH 1-3	Mark pH from equation independently Allow multiples Allow 'Al does not react'	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
02.1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$		1	$\begin{gathered} \text { 3.1.1.3 } \\ \text { AO1 } \end{gathered}$
02.2	$\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$	must be P_{4} Reject $\mathrm{P}_{2} \mathrm{O}_{5}$	1	$\begin{aligned} & 3.2 .4 \\ & \text { AO1 } \end{aligned}$
02.3	$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$ The pH (of phosphoric acid) is $1-3$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 11 - answers

AO

Question	Answers	Extra information	Mark	AO Spec reference
02.4	Sample in suitable melting point apparatus (e.g. capillary in oil bath/Thiele tube / melting point apparatus) Heat slowly/gradually/gently (to establish melting point range) Lower melting point / (broad) range of melting point indicates presence of impurities	Do not allow water bath OR melting point agrees with/ close to data book value / melts sharply/over narrow range / melting point exactly 573 K indicates purity	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO3 } \end{aligned}$
03.1	$\mathrm{Si}+\mathrm{O}_{2} \rightarrow \mathrm{SiO}_{2}$		1	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
03.2	$4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$		1	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
03.3	Silicon (di)oxide has the highest melting point Silicon dioxide has a giant/macromolecular covalent structure Sodium oxide is ionic (crystal) structure More energy needed to break the strong covalent bonds in silicon dioxide		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
04.1	A and E Both have low melting points OR weak intermolecular forces/van der Waals		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
04.2	Add water Test pH/add indicator pH 13-14	Accept flame test Flame colour Yellow flame	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 11 - answers

Question	Answers	Extra information	Mark	AO Spec reference
04.3	B Highest melting point Giant/ macromolecular covalent/strong covalent bonds		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
04.4	Add sodium hydroxide solution to both samples Magnesium oxide would not dissolve/ no visible change Aluminium oxide would react Then dissolve	Award only 3 if no mention of reaction	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
05.1	Ionic lattice / solid / giant ionic Strong forces between ions		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO1 } \end{aligned}$
05.2	Covalent molecules Weak forces of attraction between molecules		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO1 } \end{aligned}$
05.3	$\mathrm{P}_{4} \mathrm{O}_{10}$ is larger/more electrons Stronger van der Waals forces/dipole-dipole forces of attraction		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.2 .4 \\ & \text { AO1 } \end{aligned}$
05.4	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\ & \mathrm{pH}=12-14 \\ & \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 12 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{PO}_{4}^{3-}(\mathrm{aq}) \\ & \mathrm{pH} 0-2 \end{aligned}$	State symbols required	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
05.5	$6 \mathrm{Na}_{2} \mathrm{O}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}$		1	$\begin{gathered} 3.2 .4 \\ \text { AO1 } \end{gathered}$
06.1	$\mathrm{S}(\mathrm{g}) \rightarrow \mathrm{S}^{+}(\mathrm{g})+\mathrm{e}^{-}$		1	$\begin{aligned} & \text { 3.1.1.3 } \\ & \text { AOO1 } \end{aligned}$
06.2	Electron is $3 p^{4} /$ paired in p orbital Repulsion makes it easier to remove		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { 3.1.1.3 } \\ \text { AO1 } \end{gathered}$

A Level AQA Chemistry

Chapter 11 - answers

-

Question	Answers	Extra information	Mark
Spec reference			

Skills boxes Answers:

1. $a b^{2}=1.538 \times 10^{4} \times 15.98704^{2}=3930904.1896 \ldots$, which rounds to 3931000 or $3.931 \times 10^{6}(4$ s.f.)
2. $a+b+c=1.538 \times 10^{4}+15.98704+19=15414.9870 \ldots$, which rounds to 15000 or 1.5×10^{4} (2 s.f.)
3. $d \times(b+c)=3 \times 10^{-6} \times(15.98704+19)=0.000104961 \ldots$, which rounds to 0.0001 or $1 \times 10^{-4}(1$ s.f. $)$
4. $\log _{10} b=\log _{10} 15.98704=1.203768061578 \ldots$, which rounds to 1.203768 (7 s.f.)
5. $10^{d}=10^{3 \times 10^{-6}}=1.0000069077 \ldots$, which rounds to 1 (1 s.f.)
