A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
01.1	(nitrogenous) bases;	Accept named bases	1	$\begin{gathered} \text { AO2 } \\ \text { 3.1.5.1 } \end{gathered}$
01.2	```all (double-stranded) DNA molecules contain 50% }\mp@subsup{}{}{14}\textrm{N}\mathrm{ and 50% }\mp@subsup{}{}{15}\textrm{N}\mathrm{ ; template strand contains (only) }\mp@subsup{}{}{15}\textrm{N}\mathrm{ ; new strand contains (only) }\mp@subsup{}{}{14}\textrm{N}\mathrm{ ;```		2 max	$\begin{gathered} \text { AO3 } \\ \text { 3.1.5.2 } \end{gathered}$
01.3	some DNA contains only ${ }^{14} \mathrm{~N}$; which is low density; idea that (when generation 1 replicated DNA); 50% of template strands were ${ }^{14} \mathrm{~N}$ and 50% were ${ }^{15} \mathrm{~N}$;		2 max	$\begin{gathered} \text { AO3 } \\ \text { 3.1.5.2 } \end{gathered}$
01.4	50\% high density; 0\% intermediate density AND 50\% low density;		2	$\begin{gathered} \text { AO3 } \\ \text { 3.1.5.2 } \end{gathered}$
01.5	(DNA) helicase , unwinds / unzips DNA; DNA polymerase , adds nucleotides to new DNA strand;	Accept all other suitable answers e.g., DNA ligase catalyses the formation of phosphodiester bonds; DNA polymerase proofreads newly synthesised DNA	2 max	$\begin{gathered} \text { AO1 } \\ \text { 3.1.5.2 } \end{gathered}$
01.6	nucleotides; ATP;		1 max	$\begin{gathered} \mathrm{AO2} \\ \text { 3.1.5.2 } \end{gathered}$
02.1	RNA contains ribose AND DNA contains deoxyribose; RNA contains, U / uracil AND DNA contains, T / thymine; RNA is single-stranded AND DNA is double-stranded \checkmark	Accept 'amino' for 'amine' and 'carboxylic acid' for 'carboxyl group'.	3	$\begin{gathered} \text { AO1 } \\ \text { 3.1.5.1 } \end{gathered}$

A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Question	Answers			Extra information	Mark	AO Spec reference
02.2	Nitrogenous base	Complementary base	Number of hydrogen bonds formed with complementary base	One mark for column 2 One mark for 2 hydrogen bonds (column 3) One mark for 3 hydrogen bonds (column 3)	3	$\begin{gathered} \text { AO1 } \\ \text { 3.1.5.1 } \end{gathered}$
	adenine	T/thymine	2			
	cytosine	G / guanine	3			
02.3	$\mathrm{P}=$ guanine AND $\mathrm{Z}=$ cytosine; Plus any two from: P, has two rings / is a purine; Z, has one ring / is a pyrimidine; (they are bonded by) 3 hydrogen bonds;				3 max	$\begin{gathered} \mathrm{AO2} \\ \text { 3.1.5.1 } \end{gathered}$
03.1	Step in DNA purification	Why is this step required?		One mark per correct row	4	$\begin{gathered} \text { AO3 } \\ \text { 3.1.5.1 } \end{gathered}$
	grinding of plant tissue	break down cell walls				
	addition of detergent	break down cell membranes				
	addition of protease enzymes	break down, proteins / histones, surrounding DNA				
	addition of alcohol	precipitate DNA				
03.2	use of restriction enzymes/endonucleases; use of buffer (for electrophoresis gel); place DNA (fragments) in sample wells/at cathode/at negative electrode; idea that shorter fragments move (towards cathode) faster (when electric current is applied); method of visualisation described;			e.g., fluorescence under UV light or autoradiography	3 max	$\begin{aligned} & \text { AO1 } \\ & \text { 3.1.5.1 } \\ & \text { ATg } \end{aligned}$

A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Question	Answers			Extra information	Mark	AO Spec reference
04.1	Process	DNA replication	Transcription	One mark per correct row	4	$\begin{gathered} \text { AO1 } \\ 3.1 .5 .1 \\ 3.1 .5 .2 \\ 3.4 .1 \\ 3.4 .2 \end{gathered}$
	Which sections of DNA need to be unzipped?	entire length of each chromosome / AW	the gene being transcribed			
	Enzyme that catalyses the formation of the polynucleotide product	DNA polymerase / ligase	RNA polymerase			
	Polynucleotide product	two (double-stranded) DNA molecules	mRNA			
	Letters of the four nitrogenous bases in the product	A, T, C, G	A, U, C, G			
04.2	mRNA idea of carries genetic code rRNA idea of forms structure of rib tRNA idea of carries amino acid A	rom nucleus to ribosomes; somes; Dinds to (complementar	base on) mRNA;		3	$\begin{gathered} \text { AO1 } \\ 3.1 .5 .1 \\ 3.4 .2 \end{gathered}$

A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Question	Answers			Extra information	Mark	AO Spec reference
05.1	Location of bond	Name of bond	Explanation of the importance of this bonding	One mark per correct box	4	$\begin{gathered} \text { AO1 } \\ \text { 3.1.5.1 } \end{gathered}$
	between deoxyribose and phosphate	phosphodiester (bond)	forms sugar-phosphate backbone / forms structure of single DNA polynucleotide strand			
	between nitrogenous bases	hydrogen (bond)	forms double-stranded DNA molecule / complementary base pairing			
05.2	(it is) single-stranded;				1	$\begin{gathered} \text { AO1 } \\ 3.1 .5 .1 \end{gathered}$
05.3	(mRNA is relatively) shorter / smaller (than DNA);			Or reverse argument	1	$\begin{gathered} \text { AO2 } \\ 3.1 .5 .1 \end{gathered}$
05.4	(formed from) (r)RNA and proteins;				1	$\begin{gathered} \text { AO1 } \\ 3.1 .5 .1 \end{gathered}$
06.1	AAU ACA UCG;				1	AO2 2.1.3di and f
06.2	UUA UGU AGC;				1	AO2
06.3	degeneracy / redundancy;				1	AO1
06.4	triplet / codon changes; (but) same amino acid is coded; primary structure of polypeptide remains the same;				2 max	AO2
06.5	stop codon / determines length of mRNA;			Accept alternative wording	1	AO2

A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Question	Answers	Extra information	Mark	AO Spec reference
07	The following are suitable topic areas from the specification that could be used to describe the use of pentose and hexose sugars in biochemical reactions and the formation of other molecules within cells. In order to fully address the question and reach the highest mark bands students must also include at least five topics in their answer, to demonstrate a synoptic approach to the essay. Students may be able to show the relevance of other topics from the specification. Note: other topics from beyond the specification can be used, providing they relate to the title and contain factually correct material of at least an A-level standard. Credit should not be given for topics beyond the specification which are below A-level standard.		25	$\begin{gathered} \text { AO1 } \\ 3.1 .2 \\ 3.1 .5 .1 \\ 3.1 .5 .2 \\ 3.1 .6 \\ 3.4 .1 \\ 3.5 .1 \\ 3.5 .2 \end{gathered}$

A Level AQA Biology

3 Nucleotides and nucleic acids - answers

Skills box answers

Question	Answer
$\mathbf{1}$	$\mathrm{C}=32 \%$ $\mathrm{~T}=18 \%$
$\mathbf{2}$	$\mathrm{~A}=19 \%$
$\mathbf{3}$	G and $\mathrm{C}=17 \%$ A and $\mathrm{U}=33 \%$

