

Question		Answers		Extra information	Mark	AO Spec reference
01.1	a small(er) unit / molecule that can join with (many) other monomers to form a larger molecule;			Accept all other suitable answers	1	AO1 3.1.1
01.2	(named) monosaccharide(s); (named) amino acid(s); (named) (mono)nucleotide(s);				2 max	AO1 3.1.1
01.3	hydrolysis; use of water; catalysed by enzymes;				2 max	AO1 3.1.1
01.4	limited number of / 4 monomers; monomers are not joined in a chain;				1 max	AO1 3.1.1 3.1.3
02.1	Molecule being hydrolysed	Bond broken	Molecule(s) formed	Award one mark for each correct row in the table	4	AO1 3.1.2 3.1.3
	starch	glycosidic	maltose			3.1.4.1
	sucrose	glycosidic	glucose and fructose			
	triglyceride	ester	fatty acids and glycerol			
	polypeptide/peptide /dipeptide	peptide	amino acids			
02.2	(contains) sulfur / sulfate				1	AO2 3.1.2
02.3	(the polysaccharide is) he	elical / coiled			1	AO2 3.1.2

[©] Oxford University Press www.oxfordsecondary.com

Question		Answers		Extra information	Mark	AO Spec reference
03.1	green colour indicates sugar is present; no conclusion can be made about the concentration of reducing sugar without knowing the concentration and volume of Benedict's added; the sugar could be another reducing sugar (and not glucose);				3	AO3 3.1.2 AT f
03.2	conduct Benedict's test (which would give a negative result); add dilute HCl; boil; neutralise with sodium hydrogen carbonate; conduct the Benedict's test again;				3 max	AO1 3.1.2 AT f
03.3	 B – blood plasma; Explanation positive result for (named) reducing sugar; C – sieve tube fluid; Explanation positive result for sucrose / non-reducing sugar; A – cannot be either sample because neither would contain starch; 				4 max	AO3 3.1.2 3.3.4.1 3.3.4.2 AT f
03.4	the sample should be mixed then pour into test tube of wa the mixture does not need to	ater rather than ethan			2 max	AO3 3.1.3
04.1	Polysaccharides	glycogen	amylopectin	Award one mark for each correct row in the table	3	AO1 3.1.2
	Type of glycosidic bonds	1,4 and 1,6 links	1,4 and 1,6 links	- Tow III the table		3.1.2
	Helical?	yes	no			
	Branched?	yes	yes			

[©] Oxford University Press www.oxfordsecondary.com

1 Biological molecules - answers

Question	Answers	Extra information	Mark	AO Spec reference
04.2	insoluble; compact due to branching; branches increase rate of hydrolysis when glucose is required;		2 max	AO1 3.1.2
04.3	H and OH on carbon 1 face different directions	Accept an annotated diagram Accept all other suitable answers	1	AO1 3.1.2
04.4	insoluble; hydrogen bonds/cross links between polysaccharide chains; increase strength; (for) structural support;		3 max	AO1 3.1.2
05.1	both have 1,4 links; neither has branching or helices; both have cross links between polymer chains; cellulose has β-glucose monomers, chitin does not; chitin contains nitrogen, cellulose does not;		4 max	AO2 3.1.2
05.2	both have 1,4 links; both have branching; neither has links between polymer chains; amylopectin has 1,6 links rather than 2,3 links like arabinoxylan; amylopectin is not helical, whereas arabinoxylan is; amylopectin has only one monomer (α-glucose), arabinoxylan has two;		5 max	AO2 3.1.2
06.1	phospholipid has a phosphate group and two fatty acids and a triglyceride has three fatty acids (and no phosphate)		1	AO1 3.1.3
06.2	glycerol and 3 fatty acids; (3) ester bonds; 1 saturated fatty acid; 2 unsaturated fatty acids;		3 max	AO2 3.1.3

© Oxford University Press www.oxfordsecondary.com

Question	Answers	Extra information	Mark	AO Spec reference
06.3	caldarchaeol has 2 glycerols and triglyceride has 1 glycerol; caldarchaeol has OH groups (on glycerol) that have not reacted with fatty acids; caldarchaeol is cyclic / has a ring structure; caldarchaeol has longer fatty acids / fatty acids with two COOH groups;	Accept all OH groups in triglyceride glycerol have reacted Accept triglyceride is not cyclic / does not have a ring structure Accept triglyceride has shorter fatty acids / fatty acids with only one COOH group	3 max	AO2 3.1.3
06.4	strengthens / stabilises membranes	Accept all other suitable answers	1	AO2 3.1.3
07.1	 1% idea of dilute 1 part protein solution to 9 parts water; 0.1% idea of dilute 1 part protein solution to 99 parts water (using the 10% solution); 	Accept dilute 1 part protein solution to 9 parts water using the 1% solution	2	AO2 3.1.2 3.6.4.2 AT b and c
07.2	Error 40 °C temperature is too low; Explanation (higher temperature enables) glucose to react with Benedict's reagent / Cu ₂ O to form / precipitate to form; Error blue filter; Explanation red filter should be used (because red wavelengths are absorbed by any unreacted Benedict's solution);	Accept temperature should be higher / 80–100 °C Or words to this effect	4	AO3 3.1.2 3.6.4.2 AT b and c

[©] Oxford University Press www.oxfordsecondary.com

Question	Ans	swers	Extra information	Extra information Mark
08	The following are suitable topic areas from describe and explain the roles of lipids in Please note that to obtain full credit, stu (e.g., link structure to function), not just order to fully address the question and remust also include at least five topics in the approach to the essay.	dents must explain the roles of lipids write about topics that include lipids. In reach the highest mark bands students		25
	Specification reference	bond broken		
	3.1.1	Monomers and polymers		
	3.1.3	Lipids		
	3.2.1	Cell structure		
	3.2.3	Transport across cell membranes		
	3.3.3	Digestion and absorption		
	3.5.1	Photosynthesis		
	3.5.2	Respiration		
	3.6.2	Nervous coordination		
	Note: other topics from beyond the spectrelate to the title and contain factually contains			

[©] Oxford University Press www.oxfordsecondary.com

1 Biological molecules - answers

Skills box answers

1.

Test tube	Final concentration of sodium chloride / mol dm ⁻³	Volume distilled water / cm³	Volume 1 mol dm ⁻³ sodium chloride solution / cm ³	Final volume / cm³
Α	0.00	10.0	0.0	10.0
В	0.25	7.5	2.5	10.0
С	0.50	5.0	5.0	10.0
D	0.75	2.5	7.5	10.0
E	1.00	0.0	10.0	10.0

2.

Test tube	Final concentration of glucose / mol dm ⁻³	Volume distilled water / cm ³	Volume 2 mol dm ⁻³ glucose solution / cm ³	Final volume / cm³
Α	0.0	10.0	0.0	10.0
В	0.1	9.5	0.5	10.0
С	0.3	8.5	1.5	10.0
D	0.5	7.5	2.5	10.0
E	0.7	6.5	3.5	10.0
F	0.9	5.5	4.5	10.0
G	1.0	5.0	5.0	10.0

© Oxford University Press www.oxfordsecondary.com

