We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time. Find out more

Equation examples

The Quadratic Formula

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Cauchy’s Integral Formula

\(f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz\)

Angle Sum Formula for Cosines

\(\cos(\theta+\phi)=\cos(\theta)\cos(\phi)−\sin(\theta)\sin(\phi)\)

Gauss’ Divergence Theorem

\(\int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS\)

Curl of a Vector Field

\(\vec{\nabla} \times \vec{F} =
\left( \frac{\partial F_z}{\partial y} – \frac{\partial F_y}{\partial z} \right) \mathbf{i}
+ \left( \frac{\partial F_x}{\partial z} – \frac{\partial F_z}{\partial x} \right) \mathbf{j}
+ \left( \frac{\partial F_y}{\partial x} – \frac{\partial F_x}{\partial y} \right) \mathbf{k}\)

Standard Deviation

\(\sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2}\)

Definition of Christoffel Symbols

\((\nabla_X Y)^k = X^i (\nabla_i Y)^k =
X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right)\)
Loading...